Practical implementation of the sustainability criteria in Sweden

Lina Engström Swedish Energy Agency lina.engstrom@energimyndigheten.se

The use of biofuels and bioliquids in Sweden

- About 5 % of land transport fuels are biofuels (2008)
- 80 % of the bioethanol used is imported, mainly from Brazil
- The biogas used is mainly produced in Sweden
- The bioliquids for production of heat and electricity is to a large extent imported

National targets for 2020

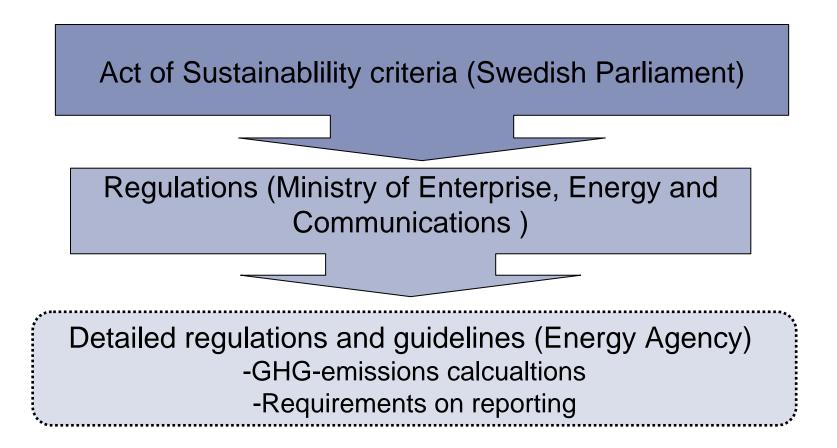
• EU

- 20 % renewable energy
- 20 % less CO2 emissions
- 10 % biofuels in transports
- Sweden
 - 49 % renewable energy
 - 20 % less CO2 emissions
 - 10 % biofuels in transport

Legal framework

Article 17.1 purposes in Sweden

- National targets, statistics gathered annually
- Green electricity green certificates for quota obligation, issued continually per MWh
- Reduction of energy taxes for renewable energy sources, declaration and desicion each month, but sustainablility criteria not required until 2012.



The Swedish Act of sustainability criteria

- Economic operators, subject to energy tax or entitled to green electricity certificates are obliged to report delivered aounts of biofuels or used amounts of bioliquids and to fulfil the demands in art 18.3 from 2011
- How and when these oligations are to be fulfileld is yet to be regulated before end of 2010

Implementation of RED in Sweden

Options to meet the sustainability criteria

- National system
- Voluntary scheme
 - Certification according to one of the Commission recognised systems
- Bilateral or multilateral agreements
 - Recognised by the Commission for this purpose
 Irrespective of the options above: Sustainable volumes are to be reported to the Energy Agency

The Swedish national system

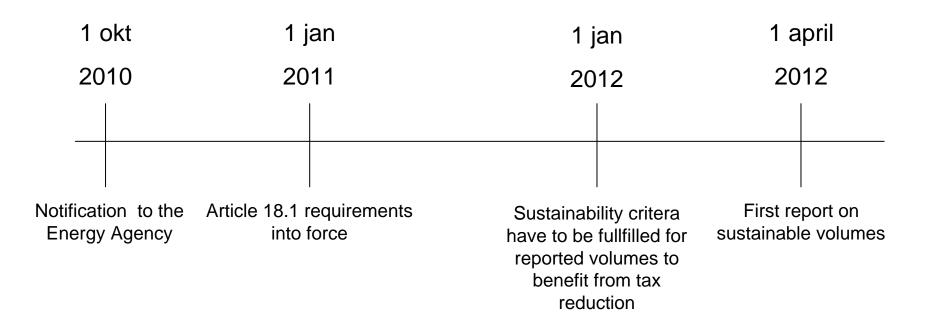
- Control system to meet the sustainability criteria for reported volumes
- Independent auditing
- Reporting to the Swedish Energy agency

Control system approval

- Proposed solution for tax reduction: an economic operator applies for a approval that the control system fulfills its purpose
- The approval af the control system is valid for one year for all volumes of biofuel/bioliquids
- Annual reporting of sustainable volumes

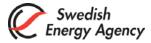
Control system requirements

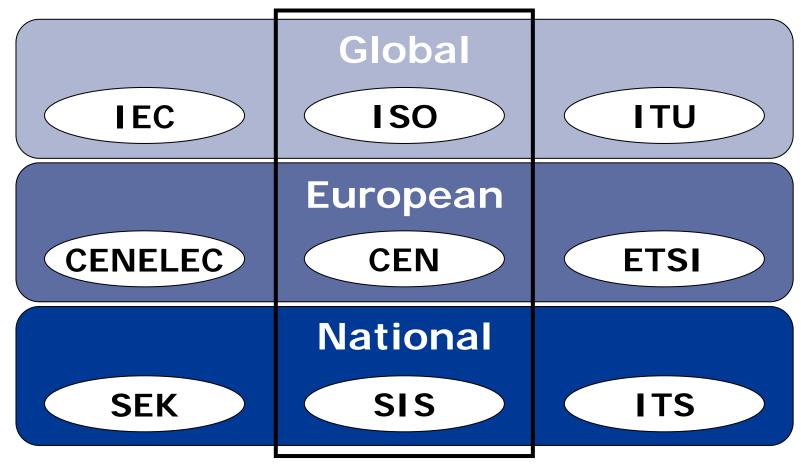
- Show that the sustainability criteria are fulfilled for all volumes reported
- Reliable and protected against fraud
- Traceability
 - Mass balance system
- Possible to audit

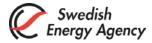


Independent verifiers

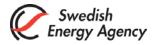
- Generic competence
- Specific competence
- Can be verified with accreditation
- Competence requirements is varying depending on the complexity in the production chains

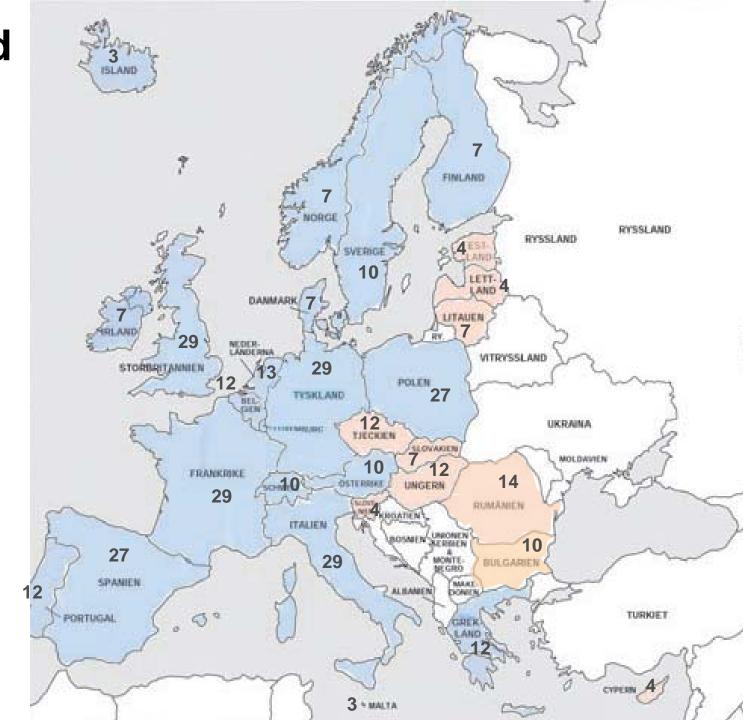

Implementation timeline for economic operators




Standardization

Biograce 2010-11-12


Standards



Standardization

- ISO standards do not have to be implemented
- CEN standards must be implemented as national standard
- Voting in ISO:
 - >66% pro voting members in TC
 - <25% against of ISO member bodies</p>
- Voting in CEN:
 - >71% pro (weighed voting)

Weighed voting within CEN (EES)

Standardization process

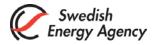
ISO

- New Work Item Proposal
- WD Working Draft
 - Committee Draft
- CD Draft International Std
- DIS Final Draft Intern. Std
- FDIS International Standard
- ISO

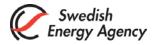
CEN

- NP
- WD
- -
- Enquiry
- prEN
- FprEN
- European Standard

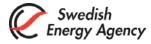
New Work Item Proposal

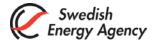

Working Draft

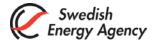
Formal Vote

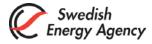

• EN

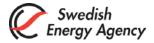
- Initial proposal by NEN
- First meeting May 2008
- EC did not mandate work
- Six WG under TC 383
 - WG1: Terminology & cross cutting issues
 - WG2: GHG emission balance
 - WG3: Biodiversity and environmental issues
 - WG4: Economic and social aspects
 - WG5: Verification and auditing
 - WG6: Indirect effects


- EC agreed with CEN work May 2009
- EC only regarded some issues needed to be standardized
- WG 1, WG 3 and WG 5 continued work
- WG 4 and WG 6 stopped work
- WG 2 continued, in spite of no EC request
- Scope: Sustainably produced biomass for energy applications – Principles, criteria, indicators and verifiers for biofuels and bioliquids


- 5 Dec 2010 enquiry ballot of standard proposals
- May 2011 end of enquiry
- Nov 2011/Jan 2012 formal vote ballot
- March 2012/ May 2012 availability of final standards


- prEN 16214-1 Part 1: Terminology
 - Relevant terms and definitions in RED
- prEN 16214-2 Part 2: Conformity assessment including chain of custody and mass balance
 - Mass balance boundaries, accredited conformity assessment, product declarations and management system requirements
- prEN 16214-3 Part 3: Biodiversity and environmental aspects
 - Areas with nature protection purposes, highly biodiverse non-natural grasslands and peat lands


- Scope: Sustainability for bioenergy
- Project committee hosted by Germany and Brazil
- First meeting in Rio de Janeiro April 2010
- 40 delegates from 11 countries
- Brazil, USA, Germany, Columbia, Sweden, Belgium, France, Switzerland, Italy, UK, Netherlands and one NGO
- Next meeting planned in May 2011 UK


- Four WG approved
 - WG1: Cross cutting issues (incl. terminology and verification and auditing)
 - WG2: Greenhouse gases
 - WG3: Environmental, economic and social aspects
 - WG4: Indirect effects

- WG conveners
 - WG1: The Netherlands
 - WG2: United States
 - WG3: Sweden and Brazil
 - WG4: United Kingdom
- WG3 has its first meeting next week in Sthlm
- Other WG:s have not started yet

- ISO 13065 standard within the extended timeline (4 years)
- Registration of DIS: May 2012
- Registration of FDIS: Nov 2013
- Publication of ISO standard: May 2014

Thank you!

Emmi.Jozsa@swedishenergyagency.se

hbk@swedishenergyagency.se

Biofuel Greenhouse gas emissions

The Biograce GHG calculation tools

- Lina Engström
- Swedish Energy Agency
- Biograce Policy Maker Workshop
- 12 Nov 2010, Stockholm



Renewable Energy Directive (RED)

- RED Annex V default GHG values
- Biograce aims to cause GHG calculations
- to be transparent by reproducing the 22
- pathways with default values

- > Biograce excel sheets

Biograce Policy Maker Workshop
 Slide 2
 12 November 2010, Stockholm

Excel sheets for calculation

- The Excel sheets show:
- Input data used
- How to convert input data to GHG emissions
- Allocation (energy content)
- How to reproduce RED Annex V default GHG
- values

Slide 3

- o Excel sheets allow for perform individually
- adapted calculations

Biograce Policy Maker Workshop12 November 2010, Stockholm

Standard values

- Standard values are values needed to convert input data into GHG emissions
- The Biograce list of standard values contains the conversion factors that were used for calculating the default values in the Renewable Energy

Directive (2009/28/EC) Annex V

Biograce Policy Maker Workshop
12 November 2010, Stockholm

Slide 4



Individually adapted calculations

- For individually adapted calculations in particular
- the tool allows to
- use individual input numbers
- define own standard values
- add process steps to an existing biofuel
- production chain (e.g. add drying step, or extra
- transport step)
- set up completely new biofuel production chains

Biograce Policy Maker Workshop 12 November 2010, Stockholm

Slide 5

Demonstration of the excel sheet

- 1. About
- 2. Directory
- 3. Sheets:
 - Input numbers
 - Standard values
 - GHG-emissions
 - LUC and carbon capture
 - Overview results box
 - Global warming potentials inconsistency
- 4. Emissions reduction
- 5. Recalculation of default values

Biograce Policy Maker Workshop

Slide 6 12 November 2010, Stockholm

Avaliability

- The calculation tool and the list of standard values can be downloaded at <u>www.biograce.net</u>
- The list of standard values is now linked from the EC <u>Transparency platform</u>

Biograce Policy Maker Workshop
12 November 2010, Stockholm

Slide 7

Harmonised GHG-calculations

BioGrace work programme

- Lina Engström
- Swedish Energy Agency
- Biograce Policy Maker Workshop
- 12 Nov 2010, Stockholm

December 2010

- Complete standard data set
- Complete 22 pathways
 - HVO sunflower
 - HVO palm oil
 - HVO palm oil (methane capture)
 - Biogas municipal organic waste
 - Biogas dry manure
 - Biogas wet manure

Biograce Policy Maker Workshop12 November 2010, Stockholm

Slide 2

Distribute results

- Information to policy makers
- •GHG calculation workshops
- Website
- Conferences

Biograce Policy Maker Workshop12 November 2010, Stockholm

Slide 3

Further work

- Land use change and N₂0 to be
 - completed in the excel sheets
- •User manual
- Calculation rules
- Adapt chains to amendment of Annex V

Biograce Policy Maker Workshop
Slide 4
12 November 2010, Stockholm

Examples of National GHG calculators

- John Neeft
- NL Agency (formerly SenterNovem)
- Policy maker workshop
- 12 November 2010, Stockholm

Contents

•

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 2 Policy maker workshop 12 November 2010, Stockholm

Introduction

Rules and methodology for GHG calculations

- RED article 19: Economic operators may use
 - o default values (19.1.a)
 - o actual values calculated according to Annex V.C (19.1.b)
 - o sum of actual value and disaggregated default value (19.1.c)
- RED Annex V.C + June communications: Methodology

Making actual calculations not straightforward

- Some kind of tool or software is needed
 - o Some companies will develop own tools
 - o Many others will use publicly available tools

This presentation is about publicly available tools BioGrace Excel tool has already been presented

Policy maker workshop12 November 2010, Stockholm

Slide 3

: Introduction

o Input data
o Standard values ("conversion factors")

•							
ltivation of rapese	eed			Calculate	d emissio	ons	
Yield				Emissions	per MJ FAN	1E	
Rapeseed		3.113 kg ha ⁻¹ vear ⁻¹		g CO ₂	g CH ₄	g N ₂ O	g CO _{2, eq}
Moisture content		10,0%					
By-product Straw		n/a kg ha ⁻¹ year ⁻¹					
Energy consumption	n	1					
Diesel		2.963 MJ ha ⁻¹ year ⁻		6,07	0,00	0,00	6,07
Agro chemicals							
N-fertiliser		137,4 kg N ha ⁻¹ yea	-1	9,08	0,03	0,03	18,89
CaO-fertiliser		19,0 kg CaO ha ⁻¹ ye	ear ⁻¹	0,05	0,00	0,00	0,06
K ₂ O-fe							
		UES				cc	
Pestic		pa	rameter: unit:	gCO ₂ /kg	i HG emissi gCH₄/kg	on coeffic gN ₂ O/kg	
N-fertiliser	-		Griffer	2827,0	8,68	9,6418	5880,0
Seeding material		-1 -1					
Seeds- rapeseed		6 kg ha ⁻¹ year ⁻¹		0,06	0,00	0,00	0,10

Contents

•

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 5 Policy maker workshop 12 November 2010, Stockholm

Dutch tool - General information

Background

- o Dutch government prepared a reporting obligation on sustainability for biofuels to start per 1-1-2009
- o This was abandoned after the publication of the draft Renewable Energy Directive (RED).

The Dutch GHG calculator

- o was developed in 2007/2008 by consultants EcoFys and CE
- o has been available for (Dutch) stakeholders to make GHG calculation on biofuels
- has not been used extensively due to lack of legal framework in 2008 2010
- o was recently updated and made "RED"- proof by Agency NL

Policy maker workshop

Slide 6 12 November 2010, Stockholm

Yield by-product

Dutch GHG tool

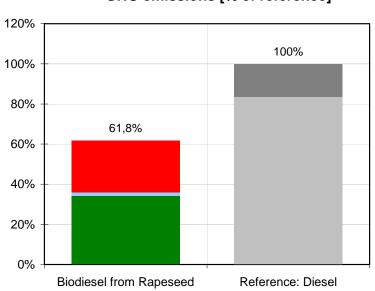
Reference:	Diesel			Load Default Values	Chain management
Biofuel:	Biodiesel	•		Calculate Results	Disclaimer
Feedstock:	Rapeseed	•		Adapt Chain	
D = Default;	U = User input				Version 3.1 -
Current cha	in: Biodiesel from Rapeseed	(not saved by user)			
Feedstock p	production				
	Yield main product	Raw rapeseed		3113 kg / (ha*yr)	D
	Main product	Moisture content		0,10 kg / kg	D
	Material & energy use	Diesel		2963 MJ / (ha*yr)	D
	Material & energy use	N fertilizer		137,4 kg N / (ha*yr)	D
	Material & energy use	CaO fertilizer		19,00 kg CaO / (ha*yr)	D
	Material & energy use	K2O fertilizer		49,46 kg K2O / (ha*yr)	D
	Material & energy use	P2O5 fertilizer		33,67 kg P2O5 / (ha*yr)	D
	Material & energy use	Pesticides		1,230 kg / (ha*yr)	D
	Material & energy use	Seeding material - rapeseed		6,000 kg / (ha*yr)	D
	Field emissions	Field N2O emissions		3,103 kg / (ha*yr)	D
	Field emissions	Direct Land Use Change	No	g CO2/MJbiofuel	D
Feedstock o	drying				
	Yield main product	Dried rapeseed		1,000 MJdried rapeseed / (MJraw rap	eseed) D
	Main product	Moisture content		0,10 kg / kg	, D
	Material & energy use	Diesel		0,181 MJ / (GJdried rapeseed)	D
	Material & energy use	Electricity (EU-mix, LV)		3,079 MJ / (GJdried rapeseed)	D

Transport feedstock			
Yield main product	Dried rapeseed	0,990 MJdried rapeseed / (MJdried rapeseed)	D
Main product	Moisture content	0,10 kg / kg	D
Transport	Truck for dry product (Diesel)	50 km	D
Extraction in oil mill			
Yield main product	Crude vegetable oil	0,613 MJcrude oil / (MJdried rapeseed)	D

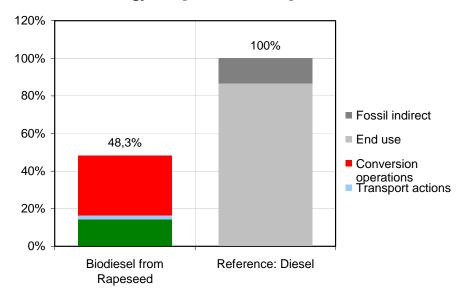
0,387 MJrapeseed cake / (MJdried rapeseed)

D

Rapeseed cake



Dutch GHG tool


Summary Inp	out	Summary output		Biodiesel fro	m Rapeseed			Referer	ice: Diesel	
			Energy u	se (per MJ)	GHG emissi	ons (kg/MJ)	Energy us	e (per MJ)	GHG emissio	ons (kg/MJ)
			(MJ)	(% of ref.)	(g CO2-eq.)	(% of ref.)	(MJ)	(%)	(g CO2-eq.)	(%)
Biofuel	Biodiesel	Feedstock production	0,1672	14%	28,7496	34%				
Feedstock	Rapeseed	Transport actions	0,0233	2%	1,4345	2%				
Process	-	Conversion operations	0,3677	32%	21,5636	26%				
Reference	Diesel									
Print su	ummary results									
1 1111 00		End use					1,0000	87%	70,1047	84%
Show d	etailed results	Fossil indirect					0,1550	13%	13,6953	16%
		Total	0,5582	48,3%	51,7477	61,8%	1,1550	100%	83,8000	100%
Retu	urn to input	% Reduction		51,7%		38,2%				0%
	Avoided em	ission (tonne CO ₂ /ha/yr)			1371,5					

Biofuels greenhouse gas calculator

NL Agency Ministry of Fouriernic Affe

GHG emissions [% of reference]

Energy use [% of reference]

Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

BIOGRACE

Dutch GHG tool

Biofuel Feedstock Process	Biodiesel Rapeseed -	Return to	o overview results		Return to input				
Reference	Diesel	Abcoluto Nu	umbara (including	n allocation)			Polativo con	tribution (includir	a allocation)
	Energy use	Emission CO2	umbers (including Emission N2O	Emission CH4	Emission GHG	Energy use	Emission CO2	tribution (includir Emission N2O	Emission CH4
	[MJ fossil fuel/	[kg CO2/	[kg CO2-eq/	[kg CO2-eq/	[kg CO2-eq/	[%]	[%]	[%]	[%]
	MJ biofuel]	MJ biofuel]	MJ biofuel]	MJ biofuel]	MJ biofuel]	[,0]	[/0]	[/0]	[/0]
Feedstock production	ine storadij	nie sieraeij	intersterater,		nie sierseij				
Diesel	0,047	3,555	0,00E+00	0,00E+00	3,555	8,4%	6,9%	0,0%	0,0%
N fertilizer	0,092	5,319	5,370	0,376	11,065	16,5%	10,3%	10,4%	0,7%
CaO fertilizer	5,13E-04	0,031	1,41E-03	1,29E-03	0,034	0,1%	0,1%	0,0%	0,0%
K2O fertilizer	6,55E-03	0,363	2,47E-03	0,024	0,390	1,2%	0,7%	0,0%	0,0%
P2O5 fertilizer	7,02E-03	0,445	7,03E-03	0,014	0,466	1,3%	0,9%	0,0%	0,0%
Pesticides	4,52E-03	0,166	8,38E-03	9,89E-03	0,185	0,8%	0,3%	0,0%	0,0%
Seeding material - rapeseed	6,46E-04	0,034	0,024	1,72E-03	0,060	0,1%	0,1%	0,0%	0,0%
Field N2O emissions	0,00E+00	0,00E+00	12,575	0,00E+00	12,575	0,0%	0,0%	24,3%	0,0%
Direct Land Use Change	-	0,00E+00	-	-	0,00E+00	-	0,0%	-	-
Total Feedstock production	0,159	9,914	17,989	0,427	28,331	28,4%	19,2%	34,8%	0,8%
Allocation burden of this and pr Allocation burden of this and pr Allocation burden of this step to	evious steps to by-pro	duct Raw rapeseed		100,0% 0,0% 58,6%					
Feedstock drying									
Diesel	2,13E-04	0,016	0,00E+00	0,00E+00	0,016	0,0%	0,0%	0,0%	0,0%
Electricity (EU-mix, LV)	8,51E-03	0,377	5,05E-03	0,021	0,403	1,5%	0,7%	0,0%	0,0%
Total Feedstock drying	8,72E-03	0,393	5,05E-03	0,021	0,419	1,6%	0,8%	0,0%	0,0%
Allocation burden of this and pr Allocation burden of this and pr Allocation burden of this step to	evious steps to by-pro	duct Dried rapesee		100,0% 0,0% 58,6%					
Transport feedstock									
Truck for dry product (Diesel)	2,29E-03	0,173	0,00E+00	2,43E-04	0,173	0,4%	0,3%	0,0%	0,0%
Total Transport feedstock	2,29E-03	0,173	0,00E+00	2,43E-04	0,173	0,4%	0,3%	0,0%	0,0%
SIIDE Y •	Policy maker		ekholm				www.	biograce.	net

12 November 2010, Stockholm

Yield by-product

Dutch GHG tool

Reference:	Diesel			Load Default Values	Chain management
Biofuel:	Biodiesel	•		Calculate Results	Disclaimer
Feedstock:	Rapeseed	•		Adapt Chain	
D = Default;	U = User input				Version 3.1 -
Current cha	in: Biodiesel from Rapeseed	(not saved by user)			
Feedstock p	production				
	Yield main product	Raw rapeseed		3113 kg / (ha*yr)	D
	Main product	Moisture content		0,10 kg / kg	D
	Material & energy use	Diesel		2963 MJ / (ha*yr)	D
	Material & energy use	N fertilizer		137,4 kg N / (ha*yr)	D
	Material & energy use	CaO fertilizer		19,00 kg CaO / (ha*yr)	D
	Material & energy use	K2O fertilizer		49,46 kg K2O / (ha*yr)	D
	Material & energy use	P2O5 fertilizer		33,67 kg P2O5 / (ha*yr)	D
	Material & energy use	Pesticides		1,230 kg / (ha*yr)	D
	Material & energy use	Seeding material - rapeseed		6,000 kg / (ha*yr)	D
	Field emissions	Field N2O emissions		3,103 kg / (ha*yr)	D
	Field emissions	Direct Land Use Change	No	g CO2/MJbiofuel	D
Feedstock o	drying				
	Yield main product	Dried rapeseed		1,000 MJdried rapeseed / (MJraw rap	eseed) D
	Main product	Moisture content		0,10 kg / kg	, D
	Material & energy use	Diesel		0,181 MJ / (GJdried rapeseed)	D
	Material & energy use	Electricity (EU-mix, LV)		3,079 MJ / (GJdried rapeseed)	D

Transport feedstock			
Yield main product	Dried rapeseed	0,990 MJdried rapeseed / (MJdried rapeseed)	D
Main product	Moisture content	0,10 kg / kg	D
Transport	Truck for dry product (Diesel)	50 km	D
Extraction in oil mill			
Yield main product	Crude vegetable oil	0,613 MJcrude oil / (MJdried rapeseed)	D

0,387 MJrapeseed cake / (MJdried rapeseed)

D

Rapeseed cake

BIOGRACE

DIRECT LAND USE	E CHANGE CALCULATION			Return to input	
1. Standard Soil Ca	rbon stock in mineral soil (SOC _{ST})				
Climate region Soil type	Boreal High activity clay soils Result	See figure 1 See figure 3 & 2 SOC _{ST} 68 ton C / ha	The blue fields are drop do	wn boxes.	
2 Factors reflecting	g the difference in Soil Organic Carbon (SOC)	compared to the Standard Soil Orc	anic Carbon (SOC)		
Actual land use	Default=Calculate with sta User = Own calculation incl. me	andard values Default	Reference land use	Default=Calculate with stan User = Own calculation incl. mea	
Type of land Climate region Land use F _{LU} Management F _{MG} Input F _I	Cropland Temperate/Boreal, dry Cultivated Full-tillage Low Result	See tables 3, 6 and 8 0,8 1 0,95 SOC _A 51,68 ton C / ha	Type of land Climate region Land use F _{LU} Management F _{MG} Input F _I	Cropland Temperate/Boreal, dry Cultivated Full-tillage Low Result	See tables 3, 6 and 8 0,8 1 0,95 SOC _{ref} 51,68 g C / ha
3. Above and below	<i>r</i> ground vegetation (Cveg)				
Actual land use Type of land Domain Climate region Ecological zone Continent Crop type	Default=Calculate with sta User = Own calculation incl. me Cropland (General)		Reference land use Type of land Domain Climate region Ecological zone Continent Crop type	Default=Calculate with star User = Own calculation incl. mea Forest 10-30% canopy cover, excl plantations Temperate Temperate continental forest Asia, Europe (<= 20 y)	sured value
	Result	C _{VEG,A} 0 ton C / ha		Result	C _{VEG, ref} 2 ton C / ha
4. Bonus (eb) for cu	ultivation on restored degraded land under the	e conditions provided for in point 8	of Annex V of directive.		
Bonus	No	No = 0 g CO ₂ /MJ Yes = -29 g CO ₂ /MJ			
Total results					
Result: CC	D_2 emission caused by direct land use change	8,5625592 g CO ₂ /MJ biofuel	Calculate Results	Re-calculate the results if you changed the va	lues here or at the input page.

Dutch tool - Summary

Contents

- o Excel-based tool
- o Tool is rather similar to BioGrace Excel sheets, but
 - It is more user-friendly:
 - no calculations details, results in graphs
 - DLUC calculations are user-friendly
- o The software programming makes it less flexible
 - More difficult to modify pathways or build new ones

Status

- o Tool is available on-line via
 - www.senternovem.nl/gave_english/ghg_tool
- o All 16 chains (BioGrace) are included
- o Updates follow updates of BioGrace Excel sheet

Slide 12 Policy maker workshop

12 November 2010, Stockholm

Contents

•

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 13 Policy maker workshop 12 November 2010, Stockholm

German tool - general information

Background

- o No public tool has been available so far in Germany
- Aim: to facilitate stakeholders calculating actual values (combination of actual values and disaggregated default values)

The German GHG calculator

- o is made by IFEU, contracted by BMU
- o should be finalised mid 2011
- o should be in line with BLE Guidance
- o is strongly linked to economic operators: 1 sheet dedicated for cultivators, mill operators, refinery operators, etc.

About this calculation tool

This Excel tool is designed to help stakeholders in the palm oil production chain by facilitating their greenhouse gas (GHG) calculations according to the Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (2009/30/EC). From 2011 onwards, biofuels and bioliquids need to prove a GHG reduction of at least 35 % compared to fossil fuels in order to qualify for state incentive programs or the renewable energy targets of the European Member States. Germany has implemented the European sustainability criteria in two ordinances; the biomass electricity sustainability ordinance and the biofuels sustainability ordinance.

This tool complements the "Guidance on Sustainable Biomass Production' published by the Federal Agency for Food and Agriculture (BLE) and is the tool-version of chapter IX. "Concrete calculation of greenhouse gas reductions".

http://www.ble.de/cln_099/nn_417472/DE/06__Aktuelles/03__Pressemitteilungen/2010/100205__BroschuereNachhaltigeBiomasse. html?__nnn=true

Calculation of GHG emissions

This tool facilitates GHG calculations according to RED Art. 19 (1) (b) and (c)

- to calculate actual values in accordance with the methodology laid down in part C of Annex V" ;
- to combine actual values with disaggregated default values in part D or E of Annex V.

With this calculator you can calculate your GHG emissions for the whole production chain or just a part of it. For each part of the production chain there is one calculation sheet with a step-by-step manual:

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

Global Warming Potentials (GWP's) Image: Constraint of the second s	Palm oil greenhouse gas calcu	ulator	Abou	ut E	Background d	ata	Start				
BACKGROUND DATA parameter: unit: Fossil energy input gC0_/kg gC1_/kg gC0_ua/kg gC0_UW gC1_/W gN_0/MJ gC0_ua/MJ gC0_ua/MJ MJ_baca/kg MJ	according to the EU Directive 2009/28/EC										
BACKGROUND DATA parameter: unit: Fossil energy input gC0_/kg gC1_/kg gC0_ua/kg gC0_UW gC1_/W gN_0/MJ gC0_ua/MJ gC0_ua/MJ MJ_baca/kg MJ											
GHG emission coefficient Fossil energy input unit: gCO2/kg gCH/kg gCO2/kg GCD2/kg GCO2	-	2	3	4	5	6	7	8	9	10	11
unit: gCO2/kg gCH2/kg gCO2/kg	BACKGROUND DATA										
Global Warming Potentials (GWP's) 1 1 GO ₂ 1 25 CA, 25 28 NyO 298 298 Agro inputs 28 48.99 PyOs-fertiliser 2827.0 8.68 9.6418 5917.2 PyOs-fertiliser 2827.0 8.68 9.6418 5917.2 PyOs-fertiliser 964.9 1.33 0.0515 1013.5 15.23 K_QO-fertiliser 191.1 0.22 0.0183 130.0 1.97 Pesticides 9886.5 25.53 1.6814 11025.7 268.40 Seeds- corn	parameter:				GHG emissio	on coefficie	ent			Fossil en	ergy input
CO2 I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	unit:	gCO₂/kg	gCH₄/kg	gN₂O/kg	gCO _{2-eq} /kg	gCO ₂ /MJ	gCH₄/MJ	gN₂O/MJ	gCO _{2-eq} /MJ	MJ _{fossil} /kg	MJ _{fossil} /MJ
CO2 Image: Color of the second s											
N20 298 298 298 298 201 201 Agro Inputs 2827.0 8.68 9.6418 5917.2 48.99 48.99 Py05-fertiliser 264.9 1.33 0.0515 1013.5 15.23 Ky0-fertiliser 964.9 1.33 0.0515 1013.5 9.68 Ca0-fertiliser 119.1 0.22 0.0183 130.0 1.97 Pesticides 986,5 25,53 1.6814 11025.7 268.40 Seeds- corn - - - - - Seeds- soy bean - - - - - Seeds- sugarcane 1.6 0.000 0.0000 1.6 0.02 36.29 Seeds- sugarcane 1.6 0.000 0.0000 1.6 0.02 -<											
N20 298 298 298 298 201 201 Agro Inputs 2827.0 8.68 9.6418 5917.2 48.99 48.99 Py05-fertiliser 264.9 1.33 0.0515 1013.5 15.23 Ky0-fertiliser 964.9 1.33 0.0515 1013.5 9.68 Ca0-fertiliser 119.1 0.22 0.0183 130.0 1.97 Pesticides 986,5 25,53 1.6814 11025.7 268.40 Seeds- corn - - - - - Seeds- soy bean - - - - - Seeds- sugarcane 1.6 0.000 0.0000 1.6 0.02 36.29 Seeds- sugarcane 1.6 0.000 0.0000 1.6 0.02 -<	CO ₂						_	_	 		
Agro inputs 2827,0 8,68 9,6418 5917,2 48,99 P ₂ O ₅ -fertiliser 964,9 1,33 0,0515 1013,5 15,23 K ₂ O-fertiliser 536,3 1,57 0,0123 579,2 9,68 CaO-fertiliser 536,3 1,57 0,0123 579,2 9,68 CaO-fertiliser 119,1 0,22 0,0183 130,0 1,97 Pesticides 986,5 25,53 1,6814 11025,7 268,40 Seeds- rapeseed 412,1 0,91 1,0028 733,7 7,87 Seeds- sugarbeet 2187,7 4,60 4,2120 3557,9 36,29 Seeds- sugarbeet 1,4 0,000 0,0000 1,6 0,02 Seeds- sugarbeet 1,4 0,010 3557,9 36,29 36,29 Seeds- sugarbaet 151,1 0,28 7,33,7 7,87 2,61 Seeds- sugarbaet 151,1 0,28 0,4003 277,3 2,61 7,87 EFB compost (palm oil) 0,0 0,0000 0,0 0,0002 66,59 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i •</td><td>i </td><td></td><td></td></t<>								i •	i 		
N-fertiliser 2827.0 8.68 9.6418 5917.2 48.99 P_{205} -fertiliser 964.9 1.33 0.0515 1013.5 15.23 15.23 K_20-fertiliser 536.3 1.57 0.0123 579.2 1 9.68 CaO-fertiliser 119.1 0.22 0.0183 130.0 1.97 1.97 Pesticides 9886.5 25.53 1.6814 11025.7 268.40 1.97 Seeds- corn - - - 268.40 - 268.40 Seeds- sugarbeet 2187.7 4.60 4.2120 3557.9 36.29 36.29 Seeds- sugarbeet 1.6 0.000 0.000 1.6 0.02 0.02 Seeds- sugarbeet 0.100 0.000 0.000 0.00 <td< td=""><td>N₂O</td><td></td><td></td><td></td><td>298</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	N ₂ O				298						
N-fertiliser 2827.0 8.68 9.6418 5917.2 48.99 P_{205} -fertiliser 964.9 1.33 0.0515 1013.5 15.23 15.23 K_20-fertiliser 536.3 1.57 0.0123 579.2 1 9.68 CaO-fertiliser 119.1 0.22 0.0183 130.0 1.97 1.97 Pesticides 9886.5 25.53 1.6814 11025.7 268.40 1.97 Seeds- corn - - - 268.40 - 268.40 Seeds- sugarbeet 2187.7 4.60 4.2120 3557.9 36.29 36.29 Seeds- sugarbeet 1.6 0.000 0.000 1.6 0.02 0.02 Seeds- sugarbeet 0.100 0.000 0.000 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
P205-fertiliser 964,9 1,33 0,0515 1013,5 15,23 K20-fertiliser 536,3 1,57 0,0123 579,2 9,68 Ca0-fertiliser 119,1 0,22 0,0183 130,0 15,23 Pesticides 986,5 25,53 1,6814 11025,7 26,40 Seeds- corn - - - - - Seeds- sugarbaset 412,1 0,91 1,0028 733,7 - - - Seeds- sugarbaset 2187,7 4,60 4,2120 3557,9 -				0 (410	5017.0					40.00	
K20-fertiliser 536,3 1,57 0,0123 579,2 9,68 Ca0-fertiliser 119,1 0,22 0,0183 130,0 1,97 Pesticides 9886,5 25,53 1,6814 11025,7 268,40 Seeds- corn - - - - - Seeds- rapesed 412,1 0,91 1,0028 733,7 7 - Seeds- soy bean - - - - - - - Seeds- sugarbeet 2187,7 4,60 4,2120 3557,9 36,29 - - Seeds- sugarbeet 2187,7 4,60 4,2120 3557,9 - 36,29 -								<u> </u>			+
CaO-fertiliser 119,1 0,22 0,0183 130,0 1,97 Pesticides 9886,5 25,53 1,6814 11025,7 268,40 Seeds- corn - - - - - Seeds- rapeseed 412,1 0,91 1,0028 733,7 - - Seeds- sugarbeet 2187,7 4,60 4,2120 3557,9 36,29 36,29 Seeds- sugarcane 1,6 0,00 0,000 1,6 - - - Seeds- sugarcane 1,6 0,91 1,0028 733,7 - 36,29 Seeds- sugarcane 1,6 0,91 1,0028 733,7 - 0,02 Seeds- wheat 151,1 0,28 0,4003 277,3 - 2,61 EFB compost (palm oil) 0,00 0,000 0,00 - - - Natural gas (4000 km, Russian NG quality) - 61,58 0,1981 0,0002 67,98 1,128 Natural gas (4000 km, EU Mix							+				
Pesticides 9886,5 25,53 1,6814 11025,7 268,40 Seeds- corn - <							_	 	i faa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		↓
Seeds- corn - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>!</td><td></td><td></td><td></td></td<>							<u> </u>	!			
Seeds- rapeseed 412,1 0,91 1,0028 733,7 7,87 Seeds- soy bean - - - - - - Seeds- sugarbeet 2187,7 4,60 4,2120 3557,9 36,29 36,29 Seeds- sugarcane 1,6 0,00 0,0000 1,6 0,02 0,02 Seeds- sunflower 412,1 0,91 1,0028 733,7 - - 36,29 Seeds- sunflower 412,1 0,91 1,0028 733,7 - - 7,87 Seeds- wheat 151,1 0,28 0,4003 277,3 - 2,61 EFB compost (palm oil) 0,0 0,000 0,0 0,00 0,00 0,00 Fuels- gasses - - - - - - - Natural gas (4000 km, Russian NG quality) - 61,58 0,1981 0,0002 66,59 1,128 Natural gas (4000 km, EU Mix qualility) - 62,96 0,1981 0,0002 67,98 1,128 Image Fullower - - -		9886,5	25,53	1,6814	11025,7			.	 	268,40	
Seeds- soy bean -		- 412.1	-	-	- ד ככד		<u> </u>		 	7 07	+
Seeds- sugarbeet 2187,7 4,60 4,2120 3557,9		412,1	0,91	1,0028	/33,/		+			7,07	+
Seeds- sugarcane 1,6 0,00 0,000 1,6	Seeds sugarbeet	- 2187 7	-	-	2557.0		+	<u> </u>	i 	36.20	+
Seeds- sunflower 412,1 0,91 1,0028 733,7 7,87 Seeds- wheat 151,1 0,28 0,4003 277,3 2,61 2,61 EFB compost (palm oil) 0,0 0,00 0,000 0,00 0,00 0,00 0,00 Fuels- gasses - <td>Seeds- sugarcane</td> <td></td> <td></td> <td>0,0000</td> <td></td> <td></td> <td>-</td> <td><u> </u></td> <td><u> </u></td> <td>0.02</td> <td>+</td>	Seeds- sugarcane			0,0000			 -	<u> </u>	<u> </u>	0.02	+
Seeds- wheat 151,1 0,28 0,4003 277,3 2 2,61 EFB compost (palm oil) 0,0 0,00 0,000 0,000 0,000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>+</td>									<u> </u>		+
EFB compost (palm oil) 0,0 0,00 0,000 0,000 0,00 0,000					277.3		†	<u> </u>		2.61	+
Fuels- gasses					0,0		<u> </u>	<u> </u>		0,00	
Natural gas (4000 km, Russian NG quality) 61,58 0,1981 0,0002 66,59 1,128 Natural gas (4000 km, EU Mix qualility) 62,96 0,1981 0,0002 67,98 1,128 Fuels- liquids 1 1 1 1 1 1 1 Diesel 87,64 - - 87,64 1,16								•			
Natural gas (4000 km, EU Mix qualility) 62,96 0,1981 0,0002 67,98 1,128 Fuels- liquids	Fuels- gasses							[
Fuels- liquids 87,64 - 87,64 1,16)				61,58			66,59		1,1281
Diesel 87,64 87,64 1,16	Natural gas (4000 km, EU Mix qualilty)					62,96	0,1981	0,0002	67,98		1,1281
Diesel 87,64 87,64 1,16	<u>i</u>						_	 	i i pa secara secara sec		
							_				
i Gasoline						87,64			87,64		1,16
	Gasoline					04.00	+		04.00		1 000
						84,98		-	84,98		1,088
Ethanol						02.00	0.2000	0.0003	100.15		1,6594
Methanol 92,80 0,2900 0,0003 100,15 1,659.						92,80	0,2900	0,0003	100,15		1,0594
Syn diesel (BtL)							+ -	<u> </u>	<u> </u>		+

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

German GHG tool

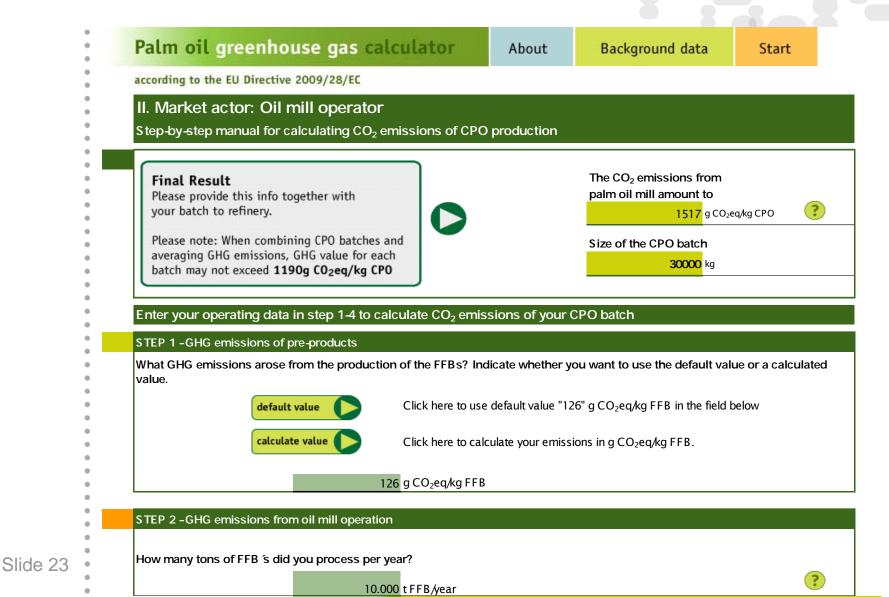
Palm oil greenhouse gas calculator	About	Background data	Star
according to the EU Directive 2009/28/EC			
I. Market actor: Plantation operator, first purch Step-by-step manual for calculating GHG emissions of oil p		n	
Final Result Please provide this info together with your batch to oil miller. Please note: When combining FFB batches and averaging GHG emissions, GHG value for each batch may not exceed 280g CO ₂ eq/kg FFB	oi	he CO ₂ emissions from il palm cultivation amount to <u>123,7</u> g CO ₂ eq/k ize of the FFB batch <u>0</u> kg	g FFB
Enter your operating data in step 1-4 to calculate CO_2 emis	sions of your F	FB batch	
STEP 1 -GHG emissions from land use changes			
Do FFB 's originate from plantation areas that were plantation are	-	y 1st 2008?	
yes Emissions from land use zero.	e change are		
Click here to calculate e sheet "land use change			
Which emissions arose from land use changes?			
$0 \text{ kg CO}_2 \text{eq per ha per years}$			

Slide 19

•

STEP 2 - GHG emissions from cultivation

	:	Palm oil greenhouse gas calcu	lator	About	Background data	Start
	•	according to the EU Directive 2009/28/EC				
	•	I. Market actor: Plantation operator,	first purch	aser		
	•	Step-by-step manual for calculating CO_2 emis	sions from lar	nd use change	<u>,</u>	
	•	The European Commission has published <i>guidelines</i> p These consist of tables with values for carbon stock in vegetation types etc.				
	•	Result				
	•	value will be added in sheet	#W	AARDE!	Confirm	value and back
	•	»actor cultivator« step 1	kg CO₂eq	per ha per year		
	•					
	•	Specify the parameters in step 1-4 to calculat	e CO2 emissio	ons from land	use changes	
	•				ace changed	
		STEP 1 -Carbon stock in above and below ground	l biomass on 01	.01.2008 (CS _R)		
	•	Please select:				
	•	Vegetation type	Forest (10-30% o	canopy cover)		?
	•	Domain				
	•	Climate region				
	•	E cological zone				
	•	Continent				
	•	Above and below ground carbon on 01.01.08	Please make a v	valid selection	t C <i>I</i> ha	
		STEP 2 -Soil carbon on 01.01.2008 (CS _R)				
	•	Climate region	Tropical, moist			?
	•					
Clide 20	• E	Please select:				
Slide 20	• •	S oil type	Low activity clay	soils		
	•	Standard soil carbon t C/ha			47	



Slide 21

Palm oil greenhou	ise gas calculator	About	Background data	Star
according to the EU Directive	2009/28/EC			
	tion operator, first purch culating GHG emissions of oil p		ı	
Final Result Please provide this info tog your batch to oil miller. Please note: When combining averaging GHG emissions, G batch may not exceed 280g	ng FFB batches and HG value for each	oi	he CO ₂ emissions from I palm cultivation amount to <u>123,7</u> g CO ₂ eq/kg ize of the FFB batch 0 kg	g FFB
	a step 1-4 to calculate CO_2 emis	sions of your F	FB batch	
STEP 2 - GHG emissions What is your FFB yield per ha				
	19.000 kg FFBs per ha per yea			
What is the size of your cultiva	19.000 kg FFBs per ha per yea			
What is the size of your cultiva	<u>19.000</u> kg FFBs per ha per yea ition area?		e following fertilizers.	
What is the size of your cultiva	19.000 kg FFBs per ha per yea tion area? 28 ha		e following fertilizers.	
What is the size of your cultiva How much fertilizer did you apply	19.000 kg FFBs per ha per year tion area? 28 ha per ha per year? Please enter the amo	unt for each of the	e following fertilizers.	

BIOGRALE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

German GHG tool

metric tonnes $g CO_2eq/kg FFB$ 1Image: Colored and the information of the i	
metric tonnes g CO2eq/kg FFB 0 0	
Supplier# Plantation name FFB quantitity metric tonnes GHG value g CO2eq/kg FFB 1 - - - 2 - - - 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 13 - - - 14 - - - 16 - - - 18 - - -	
metric tonnes g CO2eq/kg FFB 1	lue and
2	
7	suppli
7	
7	
7	
9	
10 Image: second se	
11 Image: Constraint of the second secon	
12 Image: state stat	
13 Image: state of the s	
15	
16	
17 18	
18	

Slide 24

•

German tool - Summary

Contents

- o Excel-based tool
- o Tool differs from BioGrace Excel sheets:
 - Pathways are split in partial calculations
 - DLUC calculations are user-friendly
- o The software programming makes it inflexible
 - Not possible to modify pathways or build new ones

Status

- o Tool is available on-line via www.ifeu.de/english
- o Currently one chain available: palm oil
- o Cereals-to-ethanol and oil_seeds-to-biodiesel chains ready end of 2010

Slide 26 Policy maker workshop 12 November 2010, Stockholm

Contents

•

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 27 Policy maker workshop 12 November 2010, Stockholm

Spanish tool - general information

Background

o No public tool has been available so far in Spain

 Aim: to provide stakeholders (especially farmers and small biofuel companies) with a tool to calculate the GHG emissions required by the RED

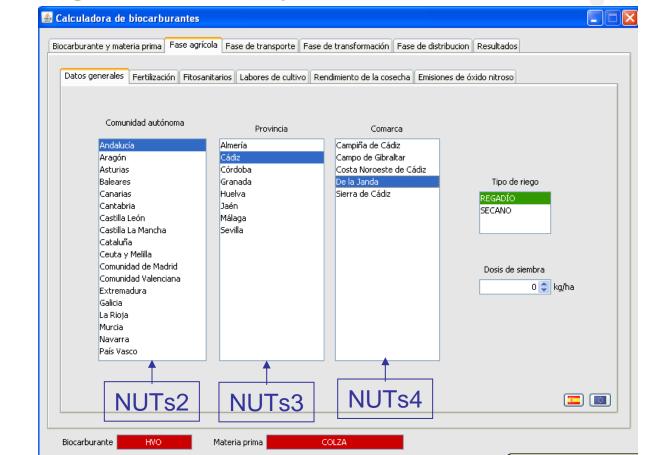
The Spanish GHG calculator

- o being developed by CIEMAT, contracted by IDEA
- o focuses on agricultural stages
- o uses data from NUTS study (actual values or averages calculated for smaller geographical areas)

Slide 28 Policy maker workshop 12 November 2010, Stockholm

Spanish GHG tool

Biofuel and raw material selection screen


BIOGRACE

•		Scalculadora de biocarburant					
•		Biocarburante y materia prima Fase	agrícola Fase de transporte	Fase de transformación	Fase de distribucion	Resultados	
•							
•							
•							
•			BIODIE	Biocarburante			
0			BIOET/ HVO				
•			PVO	-			
•			BIOGA	5			
•							
•				Materia prima			
•							
•			GIRAS				
•			PALMA	E USADO			
•			ACEIII				
•							
•							
•							
•		Biocarburante BIODIESEL	Materia prima	CARDO			
e 30 •		aker workshop				W	ww.biograce
•	12 Nover	mber 2010, Stockh	nolm				in this of grade

Spanish GHG tool

Agricultural county selection screen

Slide 31 Policy maker workshop 12 November 2010, Stockholm

Fertilization data input screen

BIOGRACE

• •

Slide

Bioc	arburante y materia prima Fase agrícola Fase de transporte Fas	Fase de transformación Fase de distribucion Resultados
	Datos generales Fertilización Fitosanitarios Labores de cultivo	Rendimiento de la cosecha Emisiones de óxido nitroso
	Fertilizantes minerales	Fertilizantes orgánicos
	% N 4	% P205 % K20
	NPK 15/15/15 0.00 🔷 kg/ha 📃 15 🛛	0 🗘 kg N/ha
	NPK 8/15/15 0 😂 kg/ha 🛛 8	15 15
	NPK 9/18/27 🛛 0 📚 kg/ha 📃 🤇	Totales
	NPK 12/10/17 🛛 0 🔷 kg/ha 📃 12	10 17 N 0.0 kg/ha
	Urea 🛛 0 🔷 kg/ha 🛛 46 🗌	0 0 P2O5 0.0 kg/ha
	Nitrato potásico 🛛 0 🔷 kg/ha 📃 12	12 12 K2O 0.0 kg/ha CaO 0.0 kg/ha Kg/ha Kg/ha
	Fosfato diamónico 0 🔷 kg/ha 12	46 0
	Sulfato de amonio 0 🗘 kg/ha 21	
	Sulfato potásico 0 🗘 kg/ha 0	0 53
	Otros 0 🗘 kg/ha 0 🗘	
	Óxido cálcico 📃 0 📚 kg/ha	
ypical v	alues for the agricultural county s	selected are uploaded
E	iocarburante HVO Materia prima	COLZA

•

Spanish GHG tool

Transformation data input screen

Biocarburant	e y materia prima Fase agrícola Fase de transporte Fase de transformación Fase de distribucion Resultados
Fase 1	
• ase 1	Fase 2
Seca	ado y almacenamiento
Hur	medad entrada materia prima 0.00 🗘 % Consumo de electricidad 22.58 📚 kWh/t materia prima seca
• H	Humedad salida materia prima 0 🗢 % Consumo de siesel 0.13 🗢 1/t materia prima seca
Extra	acción
	Materias primas
•	Semillas de colza 2.23 🔷 kg semillas/kg aceite crudo de colza
•	Hexano 0.00 🗢 kg hexano/kg aceite crudo de colza
•	Consumo de energía
•	Electricidad 0.118 🗢 kWh/kg aceite crudo de colza
•	
•	Fuente de calor Gas natural 💉 2.00 🔷 MJ/kg aceite crudo de colza
•	Productos
•	Aceite crudo de colza 1.00 🗢 kg aceite crudo de colza/kg semilla de colza
•	Harina de colza 1.35 🗢 kg harina de colza/kg semilla de colza
•	
•	
Biocarbura	ante HVO Materia prima COLZA
 Biocarbura 	ance NVO Macena prima COLZA

Spanish tool - Summary Contents Tool build in Java Ο Focus on Spain: 0 Will contain data on agricultural inputs and yields for 6 crops used to produce biofuels in Spain at the level of agrarian county (NUTs4) Any farmer in the country can select his/her county and crop and the default values regarding agricultural inputs and yields will appear in the tool. For processing and transport: RED default values 0 Standard values from BioGrace \mathbf{O} Status First draft version December 2010, final version \mathbf{O} expected mid-2011 Policy maker workshop www.biograce.net Slide 34 12 November 2010, Stockholm

Contents

•

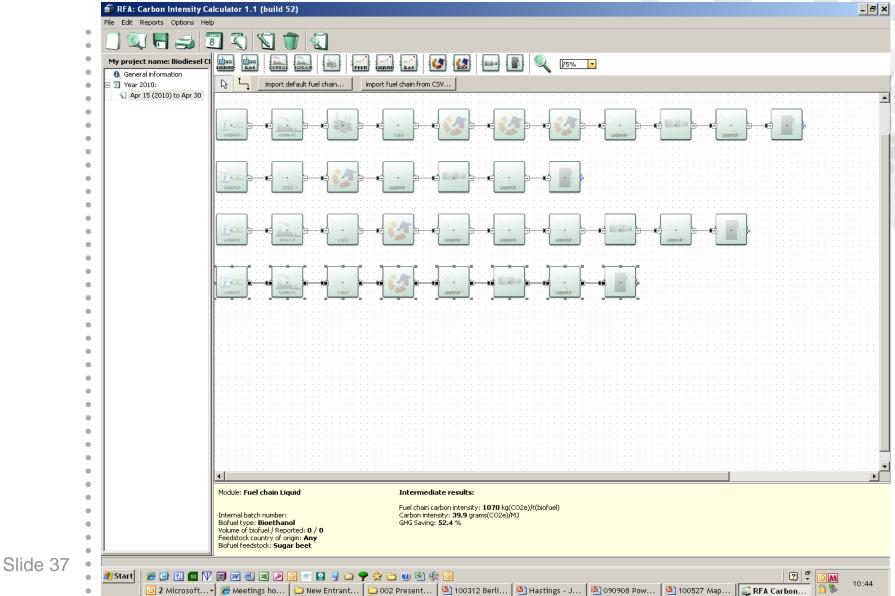
- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 35 Policy maker workshop 12 November 2010, Stockholm

UK tool - general information

Background

- UK GHG calculator was developed under RTFO reporting scheme
- o Calculator existing since 2008, regularly updated
- o Aim is to facilitate stakeholders calculating actual values under RTFO reporting


The UK GHG calculator

- o was made and is regularly updated by consultant E4Tech, contracted by RFA
- o has recently been made "RED-proof"
- o strongly linked to RTFO reporting scheme
- o Provides more "standard values" as compared to BioGrace

Slide 36 Policy maker workshop 12 November 2010, Stockholm

BIOGRACE Harmonised Calculations of Biofuel Greenhouse Gas Emissions in Europe

UK GHG tool

Slide 38

UK GHG tool

7.2 Fuel chain – Liquid

Basic data				
Module description	A brief description of the module. This field is optional.			
Details and links to verification evidence	Any further details can be added here, including, for example links to any evidence which supports the actual data used within this module. This field is optional.			
Internal batch number	A batch number for your own reference can be entered here. This field is optional.			
Fuel type produced	The biofuel type of this batch / fuel chain. This field is compulsory. This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.			
Country	The country in which the feedstock was produced (NOT necessarily the country in which the biofuel was produced). This field is compulsory ('Unknown' can be selected if relevant). This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.			
Biofuel feedstock	The type of feedstock from which the biofuel was produced. This field is compulsory ('Unknown' can be selected if relevant). This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.			

UK GHG tool

7.2 Fuel chain – Liquid

Quantity of fuel	The quantity of biofuel in this batch (measured in litres) – this is the quantity of fuel the software enters into the monthly CSV report which can be uploaded to the RFA Operating System.
Quantity of fuel recorded in the RFA Operating System	If you make any adjustments to fuel quantities recorded on the RFA Operating System after uploading a monthly CSV report, the new quantities can be recorded in this field (measured in litres).
	Annual reports can only be prepared if fuel quantities are recorded in this field.
Fuel chain default value	This field shows the appropriate fuel chain default value, based on the data you supplied on fuel type, feedstock and country of origin.
Social and Environment	al
Land use on 01 Jan 2008	The land use, on 1 st January 2008, for the land on which the biofuel feedstock was grown. Definitions of the land use are given in the Technical Guidance for RTFO year 3 Part 1 Annex H.
Standard	The sustainability standard to which the reported feedstock was produced – see Section 3.3 of the Technical Guidance for RTFO year 3 Part 1 for further details.
Social level	The 'Social level' achieved by the sustainability standard selected. This field will generally not need to be changed.

Slide 39

UK GHG tool

7.2 Fuel chain – Liquid

- Г						
		-	FEED LIQUID	GAS	1	

Basic data	
Module description	A brief description of the module. This field is optional.
Details and links to verification evidence	Any further details can be added here, including, for example links to any evidence which supports the actual data used within this module. This field is optional.
Internal batch number	A batch number for your own reference can be entered here. This field is optional.
Fuel type produced	The biofuel type of this batch / fuel chain. This field is compulsory. This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.
Country	The country in which the feedstock was produced (NOT necessarily the country in which the biofuel was produced). This field is compulsory ('Unknown' can be selected if relevant). This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.
Biofuel feedstock	The type of feedstock from which the biofuel was produced. This field is compulsory ('Unknown' can be selected if relevant). This field can only be changed if no modules follow the 'Fuel chain – Liquid' module.

Quantity of fuel	The quantity of biofuel in this batch (measured in litres) – this is the quantity of fuel the software enters into the monthly CSV report which can be uploaded to the RFA Operating System.
Quantity of fuel recorded in the RFA Operating System	If you make any adjustments to fuel quantities recorded on the RFA Operating System after uploading a monthly CSV report, the new quantities can be recorded in this field (measured in litres).
	Annual reports can only be prepared if fuel quantities are recorded in this field.
Fuel chain default value	This field shows the appropriate fuel chain default value, based on the data you supplied on fuel type, feedstock and country of origin.
Social and Environmer	ital
Land use on 01 Jan 2008	The land use, on 1 st January 2008, for the land on which the biofuel feedstock was grown. Definitions of the land use are given in the Technical Guidance for RTFO year 3 Part 1 Annex H.
Standard	The sustainability standard to which the reported feedstock was produced – see Section 3.3 of the Technical Guidance for RTFO year 3 Part 1 for further details.
Social level	The 'Social level' achieved by the sustainability standard selected. This field will generally not need to be changed.
	If supplementary checks have been performed to confirm that 'gap criteria' within the existing standard have been met, then it is possible to report the new 'Social level' achieved for the feedstock – see Section 3.4.2 of Part 1 of the Technical Guidance for RTFO year 3.

Slide 40 Policy maker workshop 12 November 2010, Stockholm

UK tool - Summary

Contents

- o Tool build in LCA-software package
- o Tool can produce supplier monthly and annual C&S reports
- o Tool differs from BioGrace Excel sheets:
 - More than 250 biofuel production pathways included
 - DLUC calculations not included
- o The software programming makes it flexible
 - Rather easy to modify pathways or build new ones

Status

Slide 41

- o Tool on-line via <u>www.renewablefuelsagency.gov.uk</u> including a user manual
- o All chains available (and more) but not all chains give same result (yet) as compared to RED defaults

Policy maker workshop
 12 Nevember 2010, Steeld

12 November 2010, Stockholm

Contents

•

- 1. Introduction
- 2. Dutch GHG calculator
- 3. German GHG calculator
- 4. Spanish GHG calculator
- 5. UK GHG calculator
- 6. Conclusions

Slide 42 Policy maker workshop 12 November 2010, Stockholm

Conclusions

Several GHG calculators available

- o Two exist since 2008, three (including BioGrace Excel sheets) are newly developed
- Project BioGrace will ensure that all calculators will give the same result
- o Some allow to modify or build new pathways, others don't

National GHG calculators have different aims

- o Some are more focussed on national data or national reporting, others are more international oriented
- o Focus on different aspects
 - Agricultural stages (Spain)
 - Supply of data through the chain of custody (Germany)

Slide 43 Policy maker workshop

12 November 2010, Stockholm

Thank you for your attention

Intelligent Energy 💽 Europe

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union.

The European Commission is not responsible for any use that may be made of the information contained therein.

Slide 44 Policy maker workshop 12 November 2010, Stockholm

