

GHG calculations under RED and FQD

John Neeft

Agency NL

GHG calculation course for verifier trainers

Contents

- 1. Background of GHG calculations
- 2. Introduction on GHG calculation tools
- 3. Tools for GHG calculation
 - Spanish & UK calculator & BioGrace
- 4. Calculation rules with some examples

GHG calculations under RED and FQD

1. Background of GHG calculations

John Neeft

Agency NL

GHG calculation course for verifier trainers

Some comments before starting

- Course is interactive:
 - Questions and discussions most welcome !
 - Examples and exercises are important !
 - Course focuses on verifying actual GHG calculations:
 - How to approve or disapprove with calculations?
 - Checking of data sources is not included
- Course is general biofuel GHG calculation course, but BioGrace tool to be used in many parts of the course as
 - It contains functions that are not included in some of the other tools (N₂O, LUC, track changes)
 - We expect it to be the most widely used tool

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 4

- Verification of actual GHG calculations can only be done if the verifier knows the requirements
 - from the European Commission
 - from the voluntary scheme under which the verification is to take place
- Please note that the content of the EC communications are not binding, the communications are not legislation but contain instructions on how things can be done

Slide 6

Relevant legislative documents

- **European legislation** 1.
 - Renewable energy directive (RED)
 - Articles 17(2), 19 and Annex V 0

	L 140/16	EN	Official Journal of the European Union	5.6.2009	
			DIRECTIVES		
		DIRECTIVE	2009/28/EC OF THE FUROPEAN PARLIAMENT AND OF THE CO	UNCIL	
		Directivi	of 23 April 2009		
		on the promotion	of the use of energy from renewable sources and amending and repealing Directives 2001/77/EC and 2003/30/EC	subsequently	
			(Text with EEA relevance)		
	http://eur	-lex.euro	pa.eu/LexUriServ/LexUriServ.do?	uri=CELEX:32	009L0028:EN:NOT
		_			
•	(<u>FQD</u> (contains	same requirements, default	values and m	nethodology)
GHG calcu	lation cou	irse for ve	erifier trainers	WW	w hiograce.net
April 10+11	l 2013, He	eidelberg			insignation

E E

2. European decisions and communications

Decision on carbon stocks

which can be used to calculate land use change e_l and soil carbon accumulation via improved agricultural management e_{sca}

17.6.2010	EN	Official Journal of the European Union	L 151/19
		COMMISSION DECISION	
		COMMISSION DECISION	
		of 10 June 2010	
	on guidelines for t	he calculation of land carbon stocks for the purpose of Annex $2009/28/\text{EC}$	V to Directive
		(notified under document C(2010) 3751)	
		(2010/335/EU)	

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:151:0019:0041:EN:PDF

Slide 7 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

2. European decisions and communications (continued)

- <u>Communication on practical application</u>
 - o Chapter 3 'Calculating the greenhouse gas impact'
 - o Annex I 'Methods for calculating the greenhouse gas impact'
 - o Annex II 'Methodology to calculate greenhouse gas impact: further elements'

C 160/8	EN	Official Journal of the European Union	19.6.2010
	Communication from bioli	m the Commission on the practical implementation of the EU iquids sustainability scheme and on counting rules for biofuels	biofuels and

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2010:160:0008:0016:EN:PDF

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

www.biograce.net

Slide 8

2. European decisions and communications (continued)

- Communication on voluntary schemes and default values
 - Chapter 3 'default values' 0

	II	
	(Information)	
INFORMATION 1	FROM EUROPEAN UNION INSTITUTIONS, BODIES, O AND AGENCIES	FFICES
	EUROPEAN COMMISSION	
Communication from	the Commission on voluntary schemes and default values in the EU and bioliquids sustainability scheme (2010/C 160/01)	biofuels
://eur-lex.europa.eu/l	_exUriServ/LexUriServ.do?uri=OJ:C:2010	:160:0001:0007
ion course for verifier	r trainers	www.biogra

Slide 9

GHG

April 1

Relevant information on voluntary schemes

• All documentation on voluntary schemes can be accessed by:

http://ec.europa.eu/energy/renewables/biofuels/sustaina bility_schemes_en.htm

- Relevant documentation is for instance:
 - ISCC: 2011 GHG Emissions Calculation Methodology and GHG audit
 - RBSA: GHG emission methodology (full document to be obtained via scheme holder)
 - Greenergy: GHG Methodology
 - REDcert: 3_Requirements for GHG calculation_EU-KOM_EN_V3_15.02.2012

• GHG calculation course for verifier trainers

Slide 10 • April 10+11 2013, Heidelberg

Relevant information on calculation tools

- Links to some of the available tools are:
 - BioGrace: Link to BioGrace tool
 - German tool: Link to German tool
 - Spanish tool: Link to Spanish tool
 - UK tool: Link to UK tool
 - Dutch tool: Link to Dutch tool

Points of attention for verifiers

- RED and communications say not much on using tools
- Our interpretation is that
 - Every tool (or empty Excel sheet or back of an envelope) may be used for actual calculations
 - Recognised voluntary schemes may not refer to calculation tools, unless these tools are recognised themselves
- BioGrace GHG calculation tool has been recognised
- Other tools are not (yet) send in for recognition by EC:
 - "National tools": Germany, Spain, The Netherlands, UK
 - Tools developed / under development within recognised schemes: Bonsucro, RBSA, RSB

Slide 12 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Points of attention for verifiers

- Currently:
 - 1) many pathways meet GHG criterion
 - 2) better GHG performance has no (financial) advantage
- Both will change in future:
 - 1) "Grandfathering clause" has been expired (1-4-2013) and GHG performance increases to 50% per 1-1-2017 and (for new installations) to 60% per 1-1-2018 (see RED 17.2)
 - Importance of FQD will grow when 6% FQD target in 2020 comes nearer and/or if MS change legislation from a mandatory share of biofuels (in MJ_{biofuels} per MJ_{diesel+gasoline}) to a mandatory GHG reduction
 - o Germany has announced to do so per 1-1-2015

- For making GHG calculations, you need:
 - 1. A methodology / rules
 - 2. Data from the process,
 - such as yield of feedstock, input of fertilisers, efficiency of conversion plant, natural gas and electricity input etc. etc.
 - 3. Numbers/coefficients to convert data into GHG emissions
 - 4. Data/numbers for the reference process
- Important to understand:
 - LCA studies can be complicated and time-consuming

- GHG calculations under RED are to some extend pragmatic, a number of assumptions have been made

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 14

Slide 16 April 10+11 2013, Heidelberg www.biograce.net

NTELLIGENT ENERGY

UROP

- <u>RED methodology</u> contains:
 - The functional unit: gram CO_{2,eq} per MJ_{biofuel}
 - A decision on how to deal with co-products: allocation based on energy content
 - An approach how to calculate e_I and e_{sca} (in combination with "Decision on guidelines for the calculation of land carbon stocks")
 - A bonus for biofuels from degraded and heavily contaminated land (definition still to be given)
 - A rule on how to deal with excess electricity produced in a CHP within the boundaries of the LCS study
 - A rule that wastes and residues are considered to have zero emissions up to the process of their collection

Slide 17

- <u>RED methodology</u> does not contain:
 - Values for emission coefficients
 - A precision of "defined region" for electricity from the grid in Annex V.C.11
 - A statement on which small emissions can be neglected
 - How to deal with heat as a co-product
- The communications contain some of these topics, however, communications are non-binding
- In some voluntary schemes (ISCC, BioGrace) these topics are included in the scheme documents

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 18

- For making GHG calculations, you need:
 - 1. A methodology / rules
 - Data from the process, such as yield of feedstock, input of fertilisers, efficiency of conversion plant, natural gas and electricity input etc. etc.
 - 3. Numbers/coefficients to convert data into GHG emissions
 - 4. Data/numbers for the reference process
- Important to understand:
 - LCA studies can be complicated and time-consuming
 - GHG calculations under RED are to some extend pragmatic, a number of assumptions have been made

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 19

2. Data from the process

- In this course further called "input data"
- We have not been able to receive examples on how companies collect such data and send them to verifiers
- We assume that verifiers need no training on how to verify actual numbers delivered, such as
 - amount of natural gas and electricity consumed in a biofuel production plant over a given time span
 - Yield of a crop and input of fertilisers, pesticides etc over a given time span

GHG calculation course for verifier trainersApril 10+11 2013, Heidelberg

Slide 20

- 3. Numbers/coefficients to convert data into GHG emissions
- Are, for instance:
 - Emission coefficients (eg gram CO₂/CH₄/N₂O per MJ natural gas)
 - Lower heating values (MJ/kg)
 - Densities (kg/litre)
 - Transport efficiencies (MJ_{fuel} per ton per km)
 - Emissions of CH₄ and N₂O for boilers, CHP's (gram per MJ steam), trucks and ships (gram per ton per km)
- In GHG calculation tools these numbers/coefficients are assumed to be "fixed" or "standard"
- In this course further called "standard values"

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 21

Slide

- 4. Data/numbers for the reference process
 - Are defined in RED Annex V.C.19
 - 19. For biofuels, for the purposes of the calculation referred to in point 4, the fossil fuel comparator E_F shall be the latest available actual average emissions from the fossil part of petrol and diesel consumed in the Community as reported under Directive 98/70/EC. If no such data are available, the value used shall be 83,8 gCO_{2eq}/MJ.
- Please note that:
 - Annex V will be updated by EC in the course of 2013
 - Reference values will change
 - (as well as default values)

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 23

Verification of GHG calculations

- When **verifying actual calculations**, a verifier should check:
 - 1. Methodology and rules
 - 2. Input data
 - 3. Conversion numbers (standard values)
 - 4. Data/numbers for the reference process
 - 5. The calculation itself

GHG calculations under RED and FQD

2. Introduction on GHG calculation tools

John Neeft

Agency NL

GHG calculation course for verifier trainers

Introduction

- LCA (Life cycle assessment) is used in many fields
- Long history in use for bio-energy assessments is old (see website of bio-energy Task 38 <u>"Greenhouse Gas</u> <u>Balances of Biomass and Bioenergy Systems"</u>)
- Many tools exist for bio-energy, see (somewhat outdated)
 <u>list of software tools on Task 38 website</u>
- Smaller amount of tools for biofuels:
 - Some tools in North-America (GREET, GHGenius)
 - A number of tools in Europe:
 - "National tools" in Germany, Spain, The Netherlands and UK
 - Tools developed in voluntary schemes: BioGrace, Bonsucro, RBSA, RSB
 - Possibly some others that we do not know of.....

• GHG calculation course for verifier trainers

April 10+11 2013, Heidelberg

Slide 26

Introduction

- This presentation (plus next one and presentation in block
 2) is on 'national tools' and on BioGrace and RSB tools:
 - BioGrace: Link to BioGrace tool
 - RSB: Link to RSB tool
 - German tool: Link to German tool
 - Spanish tool: Link to Spanish tool
 - UK tool: Link to UK tool
- Dutch tool (<u>Link to Dutch tool</u>) will not be presented as tool will not be further updated
- Bonsucro and RBSA tools are not public (yet)

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 27

Reason for existence of several tools

- Why are there so many tools?
 - There are at least three reasons:
 - 1. Some tools already existed before BioGrace was made with the aim to harmonise calculations (come to same results): NL, UK. The creation of other tools Excel tool had been started on approximately the same moment in time: ES, GE, RSB
 - 2. We could not use one of the existing tools for building the BioGrace tool:
 - The owners of the other tools would not have agreed
 - We wanted a transparent excel-based tool, the other tools were not Excel based and/or not fully transparent
 - 3. The other tools serve different uses (next sheet)

GHG calculation course for verifier trainersApril 10+11 2013, Heidelberg

Slide 28

Reason for existence of several tools

- Different uses of tools:
 - 1. Links to national biofuel regulation and/or reporting system (German tool, UK tool)
 - 2. Allows to use detailed agricultural data (NUTS-4) in calculations (Spanish tool)
 - 3. Allows calculations under different methodologies (RSB tool, both RSB methodology and RED methodology)
 - 4. To become EC voluntary scheme (BioGrace, others might follow)

Do these tools give the same results?

- BioGrace aimed to harmonise the national tools
 - This was the aim of the IEE project BioGrace (June 2010-June 2012) which is different from the GHG calculation tool BioGrace
 - This harmonisation has been realised by (1) using the same standard values and (2) updating calculations (see next slide)
- Bonsucro, RBSA and RSB tools have not been part of this harmonisation approach
 - BioGrace and RSB tools give different results:
 - Biofuel greenhouse gas calculations under the European
 Renewable Energy Directive A comparison of the BioGrace tool
 vs. the tool of the Roundtable on Sustainable Biofuels
 Applied
 Energy, In Press, Corrected Proof, Available online 12 May 2012
 Anna M. Hennecke, Mireille Faist, Jürgen Reinhardt, Victoria Junquera, John
 Neeft, Horst Fehrenbach

Do these tools give the same results?

Results from harmonisation (full table available at <u>www.biograce.net</u>):

E

NERGY

	Table A RED Annex				
	V/FQD Annex IV	Diferences with BIOGRACE tool			
		The			
		Netherlands	Germany	Spain	
Biofuel production pathways	Default value	ANL	IFEU	CIEMAT	UK
Ethanol wheat lignite	70	0,0	0,0	-0,1	0,0
Ethanol wheat (proces fuel not specified)	70	0,0	0,0	-0,1	0,1
Ethanol wheat (natural gas - steam boiler)	55	0,0	0,0	0,0	0,0
Ethanol wheat (natural gas - CHP)	44	0,0	0,2	0,0	0,0
Ethanol wheat (straw)	26	0,0	0,0	0,0	-0,6
Ethanol corn	43	0,0	0,2	0,0	0,0
Ethanol sugarbeet	40	0,0	0,0	0,6	-0,2
thanol from sugarcane	24	0,0	0,0	-0,2	-0,1
Biodiesel rape seed	52	0,0	-0,5	0,0	-0,1
iodiesel palm oil	68	0,0	0,3	-0,1	-0,2
Biodiesel palm oil (methane capture)	37	0,1	0,4	-0,2	-0,1
Biodiesel soy	58	0,1	0,0	0,1	-0,2
Biodiesel sunflower	41	0,0	-0,4	0,0	-0,1
Biodiesel UCO	14	0,0		0,0	
PVO rape seed	36	0,0	0,0	0,1	-0,1
HVO rape seed	44	0,0		0,1	-0,1
HVO palm oil	62	0,0		0,0	-0,1
HVO palm oil (methane capture)	29	0,0		0,0	-0,1
IVO sunflower	32	0,0		0,0	0,0
Biogas - dry manure	15	0,0		0,0	0,0
Biogas - wet manure	16	0,0		-0,2	0,0
Biogas - Municipal organic waste.	23	0,0		0,0	-0,1

Slide 31

•

GHG calculations under RED and FQD

3. Tools for GHG calculation

- Spanish & UK calculator & BioGrace

John Neeft Agency NL

GHG calculation course for verifier trainers

Contents

.

- 1. Introduction
- 2. Spanish GHG calculator
- 3. UK GHG calculator
- 4. BioGrace
- 5. Conclusions

ENERGY

Introduction

Rules and methodology for GHG calculations

- RED article 19: Economic operators may use
 - o default values (19.1.a)
 - o actual values calculated according to Annex V.C (19.1.b)
 - o sum of actual value and disaggregated default value (19.1.c)
- RED Annex V.C + June communications: Methodology

Making actual calculations not straightforward

- Some kind of tool or software is needed
 - o Some companies will develop own tools
 - o Many others will use publicly available tools

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 34

- Contents
- 1. Introduction
 - 2. Spanish GHG calculator
- 3. UK GHG calculator
- 4. BioGrace
- 5. Conclusions

www.biograce.net

ENERGY

R

Spanish tool - general information

Background

0

Slide 36

Aim: to provide stakeholders (especially farmers and small biofuel companies in Spain) with a tool to calculate the GHG emissions required by the RED

The Spanish GHG calculator

- o being developed by CIEMAT, contracted by IDAE
- o focuses on agricultural stages
- o uses data from NUTS study (actual values or averages calculated for smaller geographical areas)

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Spanish GHG tool

ENERGY

E

R 0

.

Slide 38

.

Spanish GHG tool

ENERGY

EURO

Spanish biofuels calculator		
Biofuel and raw material Agricultural phase T	ransportation phase Plant production phase Distribution phase $ $ CO ₂ ca	pture Results
	Biofuels	
	BIODIESEL	
	HVO	
	PVO BIOGAS	
	Danu anakarital	
	RAPESEED	
	SUNFLOWER SOYBEAN	
	PALM	
	JOSED OIL	
Biofuel BIODIESEL Raw mater	ial RAPESEED	

Spanish GHG tool

www.biograce.net

NT ENERGY

GE

UROP

E

Slide 39 Apri

•

Slide 40

•

Spanish GHG tool

ENERGY

E

Fertilization data input screen

General data Fertilization Pesticides Field works	Crop yield N ₂ O emissions Others	
Mineral fertilizers NPK 15/15/15 0 1 1 NPK 8/15/15 0 1 1 NPK 9/18/27 0 1 NPK 12/10/17 0 1 Urea 0 1 Urea 0 1 Diammonium phosphate 0 1 Amonium sulphate 0 1 Other 0 1 Other 0 1 Ca0 fertilizer 0 1 kg/ha	% N % P205 % K20 kg/ha 15 15 kg/ha 8 15 15 kg/ha 9 18 27 kg/ha 12 10 17 kg/ha 12 12 12 kg/ha 12 46 0 kg/ha 21 0 21 kg/ha 0 0 53 kg/ha 0 0 53	Organic fertilizers
ypical values for the agricultur	ral county selected are u	ploaded The second seco

Spanish GHG tool

Results screen _ | **D** | X Spanish biofuels calculator Biofuel and raw material Agricultural phase Transportation phase Plant production phase Distribution phase CO2 capture Results Cultivation of raw materials $\mathbf{e}_{\mathbf{e}c}$ | Transport and distribution phases $\mathbf{e}_{\mathbf{td}}$ | Transformation phase $\mathbf{e}_{\mathbf{p}}$ - $\mathbf{e}_{\mathbf{e}e}$ | Totals | All results in CO₂ eq g/MJ FAME Default Allocation EMISSION REDUCTION values RED Non-allocated factor Allocated Annex V.D (%) results results Fossil fuel reference Cultivation e, 43,83 58,65 29 25,71 Α 🔻 (CO₂eq g/MJ) Transport e_{td} 1,57 1 D 💌 1 83,8 🚍 Processing e_p - e_{ee} 25,07 22 D 👻 22 Emission reduction Land use change e_l 0 58,65 0 0 (%) $e_{sca} + e_{ccr} + e_{ccs}$ 0 100 0 0 41.8 TOTALS 70,47 48,71 52 CO2 eq g/MJ FAME 50 Cultivation (ec) 25 Transport (etd) 29 26 Processing (ep) 0 Land use change (el) esca + eccr + eccs Allocated results Default values RED Choice of actual values (A) of default values (D) Biofuel BIODIESEL Raw material RAPESEED

Slide 42 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

www.biograce.net

IGENT ENERGY

UROP

E

rmonised (, Heating and O
LIGG	
Spa	nish tool - Summary
-	
Contents	
0	NUTS-2 results of Spain can be uploaded:
	 Contains data on agricultural inputs and yields for 5 crops (wheat, barley, sunflower, rapeseed and sweet sorghum) used to produce biofuels in Spain at the level of agrarian county (NUTs4)
0	For transport of raw materials: from the selected region to the nearest processing plant in Spain
0	For processing: tool contains only RED default values
0	Standard values from BioGrace, does not allow to change or use own standard values
0	Does not allow to change or add pathways
0	Functional units differ from BioGrace
Status: V	Vorking on including
0	Data of sugarbeet and corn
0	Several inputs (phosphoric acid, sodium hydroxide, citric acid, sodium methylate, etc) commonly used in biofuels Spanish industry
0	Other fuels (diesel, fuel-oil and biomass) in the drying phase and in the distribution phas the transportation by pipeline.
0	Tool online via <u>www.idea.es</u> including a (Spanish) user manual
0	Tool has not been submitted for recognition
0	After the undates from FLL (with new chains) the tool is prospected to be undated

Slide 43 April 10+11 2013, Heidelberg

E

Contents

- 1. Introduction
- 2. Spanish GHG calculator
- 3. UK GHG calculator
- 4. BioGrace tool
- 5. Conclusions

ENERGY

UK tool - general information

Background

- o UK GHG calculator was developed under RTFO reporting scheme
- o Calculator existing since 2008, regularly updated
- o Version 4.5 is for reporting year 2011/2012 (and further)
- o Aim is to facilitate stakeholders calculating actual values under RTFO reporting

The UK GHG calculator

- was made and is regularly updated by consultant E4Tech, contracted by RFA
- o has been made "RED-proof"
- o strongly linked to RTFO reporting scheme
- o provides the "default chains" as compared to BioGrace

Slide 45 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

UK GHG tool

INTELLIGENT ENERGY

EUROPE

BIOGRACE II Harmonised Greenhouse Gas Calculations Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass for Electricity, Heating and Cooling from Biomass

NT ENERGY

EURO

1				
Basic data		- A		
Module description:				
Details and links to verification evidence	e:	^	Country of origin information	ŕ
			Country:	Germany
		-	NUTS 2 region:	DE13 - Freiburg 🔹
General information		E		Compliant NUTS2 Region
Internal reference nº (optional)		- 11		💿 No 🛛 🔘 Yes 💿 Unknown
Administrative consignment n°		- 11		
Fuel type produced:	Biodiesel ME 👻		Sustainability information	
Quantity of fuel:	500		Voluntary scheme 1:	International Sustainability & Ca 🔻
Final reported quantity of fuel:	500		Voluntary scheme 2:	- •
Feedstock:	Oilseed rape		Voluntary scheme 3:	- •
Production process:	[]		Note: you should only enter a scheme above if you	u have used a version approved by the commission.
Fuel chain default value:	52.0 grams(CO2e)/M1 -		To check, see the DfT RTFO Website	
	grans(coze), is		Land use on 01 Jan 2008:	Cropland - non protected 🔹
•			Other information	
•			Plant was in operation on 23 Jan 2008:	
•			Soil Carbon Accumulation:	
•				
0			Type of GHG data	Actual data for cultivation 🔹
•				
0			Intermediate results: Fuel chain carbon intensity: 1930 kg(CO2e)/t/biofuel)	GHG
•			Carbon intensity: 51,9 grams(CO2e)/MJ CHG Saving: 38,1 %	Biodiversity C-stock
•			GIG Saving, Joji /6	RED compliant (indicative)
•				
Slide 47 • GHG	calculation course for verifier trai	ners		www.biograce.net
• April 1	10+11 2013, Heidelberg			gi de como de la como d
•				

UK G	HG to	ool-	modul	e: crop p	oroduct	ion		
Emissions from c	ultivation							
Use NUTS2 (cultivation emissions							
NUTS2	Crop yield:		4,20	Tonnes(feedstoc	k)/ha			
NUTS2	cultivation impact:		529,2	kg(CO2e)/Tonne	s(feedstock)		subtotal	529,
🔘 Use regional	average values							
Region	al average Crop yield:		0,00	Tonnes(feedstock	:)/ha •	-		
Region	al average cultivation im	pact:	0,0	kg(CO2e)/Tonnes	(feedstock)	-		
Ouse the RED	cultivation GHG emission	n calculations						
Rate of nitrous oxid	le emissions per hectare	:	924,7	kg(CO2e)/ha		-		
arming inputs							subtotal	296,99
Fertilisers	• * 6							
Туре	Description	Application	Unit	Emissions f	Unit	Nitrogen c	Unit	Total emissi
		137,4292	kg(nutrien.	5,9172313	kg(CO2e)/	1	kg(N)/kg(261
Unspecified N		33.6731	kg(nutrien.	1,0135085	kg(CO2e)/	0	kg(N)/kg(11

Slide 48 • April 10+11 2013, Heidelberg

٠

BIOGRACE II

INTELLIGENT ENERGY

BIOGRACE II Harmonised Greenhouse Gas Calculations Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass for Electricity, Heating and Cooling from Biomass

ENERGY

Туре	Description	Application	Unit	Emissions f	Unit	Nitrogen c	Unit	Total emissi
Unspecified N		137,4292	kg(nutrien	5,9172313	kg(CO2e)/	1	kg(N)/kg(261
Unspecified P		33,6731	kg(nutrien	1,0135085	kg(CO2e)/	0	kg(N)/kg(11
Unspecified K		49,4567	kg(nutrien	0,5792488	kg(CO2e)/	0	kg(N)/kg(9,2
Lime fertiliser (19	kg(nutrien	0,1299669	kg(CO2e)/	0	kg(N)/kg(0,79
•				III				•
							subtotal	282,14
Pesticide application	rates:		1,23	kg(active ingredie	ent)/ha 👻			
Pesticide emissions f	actor:		11,0	kg(CO2e)/kg(acti	ive ingredient) 🔻			
							subtotal	4,356
Other inputs	\$ 8 (
Туре	Description		Use Unit		Emissions facto	r Unit	-	Total emissions
Oilseed rape s			6 ka(p	roduct)/ha	0,733733	ka(CO2e)	/ka(pr	1,41
0- free fullers							subtotal	1,41
On-farm fuel use	Description		lise lin	ð	Emissions fac	tor Unit	subtotal	1,41
On-farm fuel use Type Diesel	Description		Use Un 82,5 l(fi	it uel)/ha (Emissions fac 0,0876388888888	tor Unit 89 kg(CO2	subtotal e)/MJ	1,41 Total emissions 83,4
On-farm fuel use Type Diesel Intermediate resu otal for this module: Contribution of this	Description Its: 668 kg(CO2e)/t(crop odule to fuel chain: 11 on to chain: 55 % this module: 668 kg(C) 060 kg(CO2e)/t(b :O2e)/t(output)	Use Un 82,5 l(fi	it Jel)/ha (Emissions fac 0,08763888888888	tor Unit 89 kg(CO2	subtotal e)/MJ	1,41 Total emissions 83,4

Slide 49

UK tool - Summary

Contents

- o Tool can produce supplier monthly and annual C&S reports
- o Easy to modify pathways or build new ones
- o Tool is for UK reporting under RTFO and contains more information than GHG (the amounts of biofuel, verification schemes, biodiversity & RED compliant)

Status

Slide 50

- o Tool on-line via <u>www.renewablefuelsagency.gov.uk</u> including a user manual
- o All chains give same result as compared to RED defaults
- o Only defaults RED from year 4.5 onwards (other chains are still available if an earlier year is selected)
- o Tool has not been submitted for recognition

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

UK tool - Summary

- o Standard values used from BioGrace, and does allow to change or use own standard values (emission factors)
- o There a special field for details for verification evidence in each block
- o Actual data stored in a module is shown in bold text
- o Nuts-2 results can be uploaded
- o Difference in rule using Nuts-2 results. In BioGrace only the Nuts-2 input values may used, in UK the Nuts-2 results may be used.
- o Functional units differ from BioGrace

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 51

Contents

- 1. Introduction
- 2. Spanish GHG calculator
- 3. UK Carbon calculator
- 4. BioGrace calculator
- 5. Example

Slide 52 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Contents BioGrace

- 1. Navigate through tool
- 2. Calculation sheets per chain
- 3. Track changes
- 4. Inconsistent use of global warming potentials
- 5. Standard values
- 6. Define own standard values
- 7. List of additional standard values
- 8. Calculation of Direct Land use change
- 9. Calculation of Improved agricultural management Esca
- 10. Calculation of N₂O emissions IPCC tier 1
- 11. User manual + calculation rules

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 53

Discussed in Block 4

When actual calculations are done:

- The Biograce rules must be followed
- The Global Warming
- Potentials as given in
- 2009/28/EC & 2009/30/EC:
- 23 for CH_4 and 296 for N_2O , plus rounded LHV values
- Track changes must be
- switched on:
 - Highlights all changes
 - Shows editor's name and old values in the comment field

www.biograce.net

E

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Steps from cultivation to filling station The aggregation on top

Production of FAME from Rapeseed (steam from natural gas boiler)

Overview Results

All results in g CO ₂₀₉ / MJ _{FAME}	Non- allocated results	Allocation factor	Allocated results	Total	Actual/ Default	Default values RED Annex V.D
Cultivation e _{ec}				28,9	A	29
Cultivation of rapeseed Rapeseed drying	48,63 0,72	58,6% 58,6%	28,49 0,42			28,51 0,42
Processing ep				21,7	A	22
Extraction of oil Refining of vegetable oil Esterification	6,53 1,06 17,61	58,6% 95,7% 95,7%	3,83 1,02 16,84			3,82 17,88
Transport e _{td}			·	1,4	A	1
Transport of rapeseed Transport of FAME Filling station	0,30 0,82 0,44	58,6% 100,0% 100,0%	0,17 0,82 0,44			0,17 0,82 0,44
Land use change e _l	0,0	58,6%	0,0	0,0		0
Bonus (restored degrad	0,0	100,0%	0,0	0,0		0
e _{sca} + e _{ccr} + e _{ccs}	0,0	100,0%	0,0	0,0		0
Totals	76,1			52,0		52
		Track changes:	OFF	When using t	his GHG calcu	ulation tool, the BioGra d

Calculation per phase

Slide 56

are included in the zip file in which you do

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

April 10+11 2013, Heidelberg

www.biograce.net

All results in g CO _{2.99} / MJ _{FAME}	Non- allocated results	Allocation factor	Allocated results	Total	Actual/ Default	Default values
Cultivation e _{ec}				29,0	D	Date: 08-17-2012
Cultivation of rapeseed Rapeseed drying	43,01 0,72	58,6% 58,6%	25,20 0,42			Author: sbu
Processing e _P				21,6	A	22
Extraction of oil Refining of vegetable oil Esterification	6,50 1,06 17,51	58,6% 95,7% 95,7%	3,81 1,01 16,75			3,6 17,6
Transport e _{td}				1,4	A	1
Fransport of rapeseed Fransport of FAME Filling station	0,30 0,82 0,44	58,6% 100,0% 100,0%	0,17 0,82 0,44			0,1 0,8 0,4
Land use change e _l	0,0	58,6%	0,0	0,0		0
Bonus (restored degrae	0,0	100,0%	0,0	0,0		0
e _{sca} + e _{ccr} + e _{ccs}	0,0	100,0%	0,0	0,0		0
Totals	70,3			52,0		52
Calculation per pha	se	Track changes	: ON	When using t The rules are	his GHG calcu included in th	ilation tool, the BioGr a e zip file in which you

Indication of actual (A) and default • values (D)

Production of FAME from Rapeseed (steam from natural gas boiler)

BIOGRACE II Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

• . .

Slide 57

ENERGY

BIOGRACE II Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

Cultivation e_{ec}

Cultivation of rapeseed		Quantity of product	Ca	lculate	ed emissi	ons	
Yield		Yield	Emi	issions	per MJ FA	ME	
Rapeseed	3.113 kg ha ⁻¹ year ⁻¹	73.975 MJ _{Rapeseed} ha ⁻¹ year ⁻¹	g	CO ₂	g CH₄	g N ₂ O	g CO _{2, eq}
Moisture content	10,0%	1,000 MJ / MJ _{Rapeseed, input}					
By-product Straw	n/a kg ha ⁻¹ year ⁻¹	0,073 kg _{Rapeseed} /MJ _{FAME}					
Energy consumption							
Diesel	2.963 MJ ha ⁻¹ year ⁻¹			6,07	0,00	0,00	6,07
Agro chemicals							
N-fertiliser (kg N)	137,4 kg N ha ⁻¹ year ⁻¹			9,08	0,03	0,03	19,00
CaO-fertiliser (kg CaO)	19,0 kg CaO ha ⁻¹ year ⁻¹			0,05	0,00	0,00	0,06
K ₂ O-fertiliser (kg K ₂ O)	49,5 kg K ₂ O ha ⁻¹ year ⁻¹			0,62	0,00	0,00	0,67
P_2O_5 -fertiliser (kg P_2O_5)	33,7 kg P₂O₅ ha⁻¹ year⁻¹			0,76	0,00	0,00	0,80
Pesticides	1,2 kg ha ⁻¹ year ⁻¹			0,28	0,00	0,00	0,32
Seeding material							
Seeds- rapeseed	6 kg ha ⁻¹ year ⁻¹			0,06	0,00	0,00	0,10
Field N ₂ O emissions	3,10 kg ha ⁻¹ year ⁻¹			0,00	0,00	0,07	21,61
			Total	16,92	0,03	0,10	48,63
			Result		g CO _{2,eq} / N		48,63
•							
•	LI						
-							

fill in actual data

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 58

www.biograce.net

NT ENERGY

G

EURO

Slide 59

for Electricity, Heating and Cooling from Biomass

fill in actual data

BIOGRACE II Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

Cultivation e_{ec} •

Cultivation of	f rapeseed		Qua	antity of product		Calculate	d emissi	ons	
	Yield		Yield			Emissions	per MJ FAN	ΛE	
	Rapeseed Moisture content	3.113 kg ha ⁻¹ year ⁻¹ 10,0%		73.975 MJ _{Rapeseed} ha ⁻¹ year ⁻¹ 1,000 MJ / MJ _{Rapeseed, input}		g CO ₂	g CH ₄	g N ₂ O	g CO _{2, eq}
	By-product Straw	n/a kg ha ⁻¹ year ⁻¹		0,073 kg _{Rapeseed} /MJ _{FAME}					
	Energy consumption								
	Diesel	2.963 MJ ha ⁻¹ year ⁻¹				6,07	0,00	0,00	6,07
	Agro chemicals								
	N-fertiliser (kg N)	137,4 kg N ha 'year'				9,08	0,03	0,03	19,00
	CaO-fertiliser (kg CaO)	19,0 kg CaO ha ⁻¹ year ⁻¹				0,05	0,00	0,00	0,06
	K_2O -fertiliser (kg K_2O)	49,5 kg K ₂ O ha ⁻¹ year ⁻¹		conversion factors	R	0,62	0,00	0,00	0,67
	P_2O_5 -fertiliser (kg P_2O_5)	33,7 kg P ₂ O ₅ ha ⁻¹ year ⁻¹				0,76	0,00	0,00	0,80
	Pesticides	1,2 kg ha ⁻¹ year ⁻¹		yield related		0,28	0,00	0,00	0,32
	Seeding material								
	Seeds- rapeseed	6 kg ha ⁻¹ year ⁻¹				0,06	0,00	0,00	0,10
	Field N ₂ O emissions	3.10 kg ha ⁻¹ year ⁻¹				0.00	0.00	0.07	21.61
	-				Total	16,92	0,03	0,10	48,63
				F	lesult	g	ј СО _{2,еq} / М	J _{FAME}	48,63
	•								
	•								

fill in actual data

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 60

www.biograce.net

NT ENERGY

G

E U R 0

for Electricity, Heating and Cooling from Biomass

Quantity of product

Yield

Slide 61

73.975 MJ_{Rapeseed} ha⁻¹ year⁻¹

1,000 MJ / MJ_{Rapeseed, input}

0,073 kg_{Rapeseed}/MJ_{FAME}

yield related conversion factors raw material per final biofuel

values as a function of input values and/or of the chain

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

BIOGRACE 11 Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass

•

Cultivation e_{ec}

multiplying input values with "standard values"

Cultivation of rapeseed		Q	Quantity of product		Calculate	d emissi	ons	
Yield		Yi	ield		Emissions	per MJ FA	ME	
Rapeseed Moisture content By-product Straw	3.113 kg ha ⁻¹ year ⁻¹ 10,0% n/a kg ha ⁻¹ year ⁻¹		73.975 MJ _{Rapeseed} ha ⁻¹ year ⁻¹ 1,000 MJ / MJ _{Rapeseed, input} 0,073 kg _{Rapeseed} /MJ _{FAME}		g CO ₂	g CH₄	g N ₂ O	g CO _{2, eq}
Energy consumption Diesel	2.963 MJ ha ⁻¹ year ⁻¹		conversion factors yield related		6,07	0,00	0,00	6,07
N-fertiliser (kg N) CaO-fertiliser (kg CaO) K_2O -fertiliser (kg K_2O) P_2O_5 -fertiliser (kg P_2O_5) Pesticides	137,4 kg N ha ⁻¹ year ⁻¹ 19,0 kg CaO ha ⁻¹ year ⁻¹ 49,5 kg K₂O ha ⁻¹ year ⁻¹ 33,7 kg P₂O₅ ha ⁻¹ year ⁻¹ 1,2 kg ha ⁻¹ year ⁻¹				9,08 0,05 0,62 0,76 0,28	0,03 0,00 0,00 0,00 0,00	0,03 0,00 0,00 0,00 0,00	19,00 0,06 0,67 0,80 0,32
Seeding material Seeds- rapeseed Field N ₂ O emissions	6 kg ha ⁻¹ year ⁻¹ 3,10 kg ha ⁻¹ year ⁻¹			Tota	0,06 0,00 I 16,92	0,00 0,00 0,03	0,00 0,07 0,10	0,10 21,6 ² 48,6 3
				Resul	t ç	g CO _{2,eq} / N	J _{FAME}	48,63

fill in actual data

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

ENERGY

0

Slide 62

.

Slide 63

Cultivation e_{ec}

Results related to raw material or acreage

E

ENERGY

•	Cultivation of rapeseed		Info	
•	Yield		per kg rapeseed	per ha, year
•	Rapeseed	g CO _{2, eq}	g CO _{2, eq}	kg CO _{2, eq}
•	Moisture content	-, - 4		
•	By-product Straw			
•	by product citain			
•	Energy consumption			
•	Diesel	6.07	83,40	259,7
•		-,		
•	Agro chemicals			
•	N-fertiliser (kg N)	19,00	261,19	813,2
•	CaO-fertiliser (kg CaO)	0.06	0,79	2,5
•	K ₂ O-fertiliser (kg K ₂ O)	0.67	9,20	28,6
•	P_2O_5 -fertiliser (kg P_2O_5)	0.80	10,96	34,1
•	Pesticides	0.32	4,36	13,6
•		0,01		
•	Seeding material			
•	Seeds- rapeseed	0,10	1,41	4,4
•				
•	Field N ₂ O emissions	21,61	296,99	924,7
•		48,63	668,31	2080,7
•				
•		48,63		
•	GHG calculation course for verifier trainers			hiograpo not

April 10+11 2013, Heidelberg

www.biuyrace.iiei

BIOGRACE II

•

Slide 64

Processing e_p Step 1, oil extraction

Extraction of oil			Quantity of product	Cal	culated	emissio	ns		
	Yield			Emissions per MJ FAME					
	Crude vegetable oil	0,6125 MJ _{Oil} / MJ _{Rapeseed}	44.861 MJ _{Oil} ha ⁻¹ year ⁻¹		g CO ₂	$g CH_4$	g N ₂ O	g CO _{2, eq}	
	By-product Rapeseed cake	0,3875 MJ _{Rapeseed cake} / MJ _{Rapeseed}	0,606 MJ / MJ _{Rapeseed, input}						
			0,029 kg _{Oil} / MJ _{FAME}						
	Energy consumption								
	Electricity EU mix MV	0,0118 MJ / MJ _{Oil}			1,47	0,00	0,00	1,58	
	Steam (from NG boiler)	0,0557 MJ / MJ _{Oil}							
	<u>NG Boiler</u>			<u>Emis</u>	sions fror	<u>n NG boile</u>	<u>r</u>		
	CH ₄ and N ₂ O emissions fro	n NG boiler			0,00	0,00	0,00	0,02	
	Natural gas input / MJ stea	n 1,111 MJ / MJ _{Steam}							
	Natural gas (4000 km, EU I	ix 0,062 MJ / MJ _{Oil}			4,08	0,01	0,00	4,41	
	Electricity input / MJ steam	0,020 MJ / MJ _{Steam}							
	Electricity EU mix MV	0,001 MJ / MJ _{Oil}			0,14	0,00	0,00	0,15	
	Chemicals								
	n-Hexane	0,0043 MJ / MJ _{Oil}			0,36	0,00	0,00	0,37	
				Iotal	6,06	0,02	0,00	6,53	
				Result	g (CO _{2,eq} / MJ	FAME	6,53	

fill in actual data

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

www.biograce.net

ENERGY

E

0 R

Transport e_{td} of FAME

Transport of FAME	to and from depot			Quantity of product		Calculated emissions				
	FAME	1,000 MJ _{FAME} / MJ _{FAME}		42790,9 MJ _{FAME} ha ⁻¹ year ⁻¹		Emissions p	sions per MJ FAME			
				0,578 MJ / MJ _{Rapeseed, input}		g CO ₂	g CH ₄	g N₂O	g CO _{2, eq}	
	Transport per									
	Truck for liquids (Diesel)	300 km		0,0047 ton km / MJ _{Rapeseed, input}		0,71	0,00	0,00	0,71	
	Fue	Diesel								
	_									
	Energy cons. depot									
	Electricity EU mix LV	0,00084 MJ / MJ _{FAME}				0,10	0,00	0,00	0,11	
					Result	g	CO _{2,eq} / M.	J _{FAME}	0,8225	

fill in actual data

•

Filling station		Quantity of product					
Yield	1,000 MJ _{FAME} / MJ _{FAME}	42790,9 MJ _{FAME} ha ⁻¹ year ⁻¹	Er	nissions į	oer MJ FAM	E	
		0,578 MJ / MJ _{Rapeseed, input}		g CO ₂	g CH ₄	g N ₂ O	$g CO_{2, eq}$
Energy consumption							
Electricity EU mix LV	0,0034 MJ / MJ _{FAME}			0,41	0,00	0,00	0,44
			Result	g	CO _{2,eq} / MJ	FAME	0,44

Slide 65 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

www.biograce.net

ENERGY

EURO

Allocation

- Allocation of emissions of product and co-product is done by
- energy content (LHV)

Allocation		Total emission	before a	llocation:	g CO _{2,еq} / МЈ _{ЕАМЕ}	56,17	
over main- and co-product							Info
		Emissions up	to and inc	cluding this process step:	56,17 g CO _{Zeq} / MJ _{FAME}		per kg oil
Main product:	Rapeseed oil	Energy content (based on 1 MJ)	1,0000	MJ	34,40 g CO _{zeq} / MJ _{FAME}		g CO _{z, eq}
Co-product:	Rapeseed cake	Energy content co-product	0,6326	MJ	21,77_g CO _{zeq} / MJ _{FAME}		
		Total:	1,6326	MJ			
		Total emission	after allo	cation:	g CO _{2,eq} / MJ _{FAME}	34,40	1181,37

Summerized in the overview on top

Allocation factors								
Extraction of oil								
61,3%	to Rapeseed oil							
38,7%	to Rapeseed cake							
Esterificatio	on							
95,7%	to FAME							
4,3%	to Refined glycerol							

Slide 66 GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

List of standard values •

	2	3	4	5	6	-
STANDARD VALUES		Ű	·			
parameter:	GWP				GHG emissia	n c
	gCO _{z,eq} / g	gCO₂/kg	gCH⊿⁄kg	gN₂O/kg	gCO _{z∞a} /kg	gC
Global Warming Potentials (GWP's)						
ico,	1					
CH.	23					
IN-0	296					
						t
Aaro inputs						
N-fertiliser (kg N)	1	2827,0	8,68	9,6418	5880,6	t
PzOs-fertiliser (kg PzOs)		964,9	1,33	0,0515	1010,7	
K,O-fertiliser (kg K,O)		536,3	1,57	0,0123	576,1	
CaO-fertiliser (kg CaO)		119,1	0,22	0.0183	129,5	t
Pesticides		9886,5	25,53	1,6814	10971,3	
Seeds- corn	1	0,0	0,00	0,0000	0,0	T
Seeds- rapeseed		412,1	0,91	1,0028	729,9	
Seeds- soy bean	1	0,0	0,00	0,0000	0,0	
Seeds- sugarbeet		2187,7	4,60	4,2120	3540,3	
Seeds- sugarcane		1,6	0,00	0,0000	1,6	
Seeds- sunflower		412,1	0,91	1,0028	729,9	L
Seeds- wheat		151,1	0,28	0,4003	275,9	
Residues (feedstock or input)						
EFB compost (palm oil)	1	0,0	0,00	0,0000	0,0	
Filter mud cake	I	0,0	0,00	0,0000	0,0	
Manure	1	0,0	0,00	0,0000	0,0	
Vinasse		0,0	0,00	0,0000	0,0	

E E RGY

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

www.biograce.net

Slide 68

RTD	GRACE II	use Gas Calculations	>
6.20	Harmonised Greennon for Electricity, Heating	g and Cooling How	

Slide 69

User defined standard values •

•					-0		
•	Version 4b - Public				Ŭ		
•	1	2	3	4	5	6	
•	User Defined Standard Values						
•	parameter:	Comments			(GHG emissio	on coe
•	unit:		gCO₂/kg	gCH⊿/kg	gN₂O/kg	gCO _{z⊷a} /kg	gCC
•	User defined standard values						
	Example 1 (diesel from standard values)					0	87,
	Example 2 (methanol from standard values)					0	92,
•	Example 3 (N-fertiliser from standard values)		2827,0	8,68	9,6418	5880,5901	
•						0	
						0	Γ
•	Ammonium Nitrate		2900,0	0,00	0,0000	2900	
	Urea		1707,0	0,00	0,0000	1707	T
	Compound		5376,0	0,00	0,0000	5376	
•						0	T
						0	
•						0	T
						0	
•						0	1
						-	

Fill in user defined standard values in list

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

www.biograce.net

NERGY

E

User defined standard values

- Fill the names (2) and amounts (3)
- and copy conversion formulas (4) when rows (1) are added

Calculation per phase Track changes: ON		When using this GHG calculation tool, the BioGrace calculation rules must be respected. The rules are included in the zip file in which you downloaded this tool. The rules are also available at www.BioGrace.net								
Cultivation of rapes	seed		Quantity of product	Calculat	ed emiss	sions		Info		
	Yield		Yield	Emission	s per MJ F	AME		per kg rapeseed per ha, year		
	Rapeseed	3.060 kg ha ⁻¹ year ⁻¹	80.784 MJ _{Rapeseed} ha ⁻¹ year ⁻¹	g CO _z	g CH₊	g N _z O	g CO _{z, eq}	g CO _{z, eq}	kg CO _{z, eq}	
	Moisture content	0,0%	1,000 MJ / MJ _{Rapeseed, Input}							
	Co-product Straw	n/a kg ha ⁻¹ year ⁻¹	0,065 kg _{Rapeseed} /MJ _{FAME}							
	Energy consumption Diesel	4.447 MJ ha ⁻¹ year ⁻¹		8,34	0,00	0,00	8,34	127,36	389,7	
	Agro chemicals	3								
	Ammonium Nitrate	143,0 kg N ha ⁻¹ year ⁻¹		8,87	0,00	0,00	8,87	135,52	414,7	
1	Urea	40,0		1,46	0,00	0,00	1,46	22,31	68,3	
	Compound	9,0		4 1,04	0,00	0,00	1,04	15,81	48,4	
	Manure	0,0 kg N ha" year"		0,00	0,00	0,00	0,00	0,00	0,0	
	CaO-fertiliser (kg CaO)	0,0 kg CaO ha ' year '		0,00	0,00	0,00	0,00	0,00	0,0	
	K ₂ O-fertiliser (kg K ₂ O)	34,0 kg K ₂ O ha" year"		0,39	0,00	0,00	0,42	6,40	19,6	
	P _z O _s -fertiliser (kg P _z O _s	s) 29,0 kg P _z O _s ha ⁻¹ year ⁻¹		0,60	0,00	0,00	0,63	9,58	29,3	
	Pesticides	2,6 kg ha ⁻¹ year ⁻¹		0,55	0,00	0,00	0,61	9,32	28,5	

List of additional standard values

• When a standard value is not on the BioGrace list of standard values, it is recommended to take a number from this list of additional standard values - if available on this list - and to include the reference that is given in this list as reliable information on how the value was determined.

Contains data for selections of

- mineral fertilizer types and other agro inputs
- conversion inputs (process chemicals)
- national electricity grids
- solid and gaseous biomass sources for energy
- transport (pipeline)

Slide 71

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

BioGrace tool -summery

Contents

- o Rather easy to modify or build new pathways
- o Own defined standard values and additional standard values
- o With track changes on easy to verify
- o BioGrace Calculation rules
- o User manual

Status

- Version 4c has been recognised by EC as Voluntary scheme
- Version 4c has small changes compared to version 4b (which was published until now)
- Tool will be online www.biograce.net
- After the updates from EU (with new chains) the tool will be updated

Slide 72 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Contents

- 1. Introduction
- 2. Spanish GHG calculator
- 3. UK GHG calculator
- 4. BioGrace tool

5. Conclusion

ENERGY

Comparison of tools

	BioGrace	Spanish tool	UK tool			
	Add or modify chains	No new or modifying chains	Add or modifying chains			
	Functional unit: MJ biofuel / bioliquid (final product)	Functional units: Different sometimes (other input values compared to BioGrace)	Functional unit: Different sometimes (other input values compared to BioGrace)			
	NUTS input data can be used	Upload of NUTS results Spain	Upload of NUTS results Europe			
	List of standard values, user defined, additional stan. values	List of standard values	List of standard values and user defined			
Sli	Objective: transparency of annex V values & actual calculations	Objective: Help stakeholders in Spain (especially farmers and small biofuel companies)	Objective: Reporting under RTFO			

NTENERGY

G

EURO

GHG calculations under RED and FQD

4. Calculation rules with some examples

John Neeft

Agency NL

GHG calculation course for verifier trainers

- Contents
 - Some comments before starting
 - BioGrace calculation rules (version 4c)
 - Some questions / exercises to practice

Some comments before starting

- BioGrace GHG calculation tool has been recognised by the European Commission
- As a result of evaluation, some calculation rules have changed compared to version 1b
 - In this presentation, version 4c will be presented

Some comments before starting

- In previous public version of BioGrace GHG calculation tool (version 4b – Public), numbering of the different elements was not yet the same:
 - BioGrace Excel tool version 4b Public
 - BioGrace calculation rules version 1b Public
 - BioGrace user manual version 1b Public
- In recognised version of BioGrace GHG calculation tool (version 4c – Public), numbering has been updated:
 - BioGrace Excel tool version 4c
 - BioGrace additional standard values version 4c
 - BioGrace calculation rules version 4c
 - BioGrace user manual version 4c

Slide 78

1. Introduction

The BioGrace GHG calculation rules are in line with the methodology as given in Annex V.C of the RED and in the communication, with one exception as explained in footnote 14 (electricity mix).

- 2.1.1 If the BioGrace Excel tool is used, the BioGrace calculation rules shall be respected. An auditor checking actual calculations shall not approve the calculations when the calculation rules were not respected.
- 2.1.2 Actual calculations shall be made with the version "for Compliance" of the Excel tool in which the "track changes" option is always turned on.

Slide 79 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

2.2.3 Standard value for fertiliser

2.3 Cut-off criteria

"If the contribution of that input or process to the total emissions of the biofuel pathway is lower than 0.1 g CO_{2.ed}/MJ biofuel, it may be excluded"

This rule includes a table with mass and energy thresholds, see document

GHG calculation course for verifier trainers Slide 80 April 10+11 2013, Heidelberg

- 2.4 Combining disaggregated default values and actual values This is 1:1 following RED article 19
- 2.5 Use of starting values in the BioGrace GHG calculation tool Summary: when making an actual calculation for one process step, starting values may be kept for another process step

"When changing a starting value into an actual value, all other starting values in that part of the biofuel production chain (either cultivation, processing or transport) shall be changed into actual values as well, including the starting values of other steps within the same part of the biofuel production chain (either cultivation, processing or transport)." Exception: distribution of fuel from depot to filling station

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 81

2.6 Using the result(s) from previous and partial GHG calculations *"In order to use the result from previous partial GHG calculations in the BioGrace Excel tool these previous partial calculations shall have been made using BioGrace"*

Unless another voluntary scheme including calculation software will be recognised for making actual GHG calculations

2.6 Use of the sheet "user specific calculations"

"The BioGrace Excel tool contains a sheet "User specific calculations"

which allows users of the tool to make company- or user-specific

calculations, such as converting company- or user-specific data into the format in which the data can be entered into BioGrace."

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 82

3.1 Field N₂O emissions

3.2 Use of average values

3.3 Use of aggregated or measured values

3.4 Non artificial fertilizer

3.5 Actual input data for use of fertilisers

See rule document

Slide 83 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

4.1 Use of actual values

"Actual values for emissions from processing steps (ep in the methodology) in the production chain must be measured or based on technical specifications of the processing facility"

```
4.2 Allocation
```

See rule document

Slide 84 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

4.3 Electricity use

"Emissions from using grid electricity shall be calculated from the average emission intensity for the country in which the electricity is taken from the grid. Country-average emission intensities for electricity shall be taken from the BioGrace list of additional standard values. It is not allowed to use the average emission intensity for the EU electricity mix.¹⁴"

¹⁴: This rule therefore deviates from "Communication on the practical implementation [OJ C160, page 8]" which states that the most logical choice is to take the average emission intensity for the EU. The reason for deviating from "the most logical choice" from the Communication, is that under other voluntary sustainability schemes it is allowed the use the national average emission intensity also for EU countries and because BioGrace aims to avoid disharmonised calculation rules.

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 85

RTFO Guidance - Wastes and residues

Valid from 15 December 2011 - v4.5

This document contains lists of biofuel feedstocks which the Administrator has assessed and categorises them according to whether, in the Administrator's view, they are products or other materials such as wastes and residues which double count under the RTFO. Materials listed in Tables 2-4 receive two RTFCs for every litre/kg of biofuel. It should be used in conjunction with the RTFO

Guida 8 of th	an ne Tabl	Table 1- Products									
waste	Mate	Material [Description			Valid from]			
This o chang latest	do ge v	Table	2 - Re	esidue	s fron	n agric	oile derived from polm, cov culture, aquaculture, fore	estry and fis	heries		
		Material		Descr	iption						Valid from
•	fats) 2 ¹	o) Forest residu	Table	able 3 - Wastes & processing residues						15/12/11	
•			Material		Description			Valid from			
•			Waste	Wood	wood The treatment of waste wood in the DED CHC 15/12/11			11			
•		Arbori		Tabl	e 4 - N	lon-fo	od cellulosic and ligno-o	cellulosic ma	aterial		1
•		residu		Mater	terial Descript		iption			Valid from	
•	fats) (v (anima category		Misca	liscanthus This is a non-food material comm		a non-food material commonly	nly grown as an energy 15		15/12	/11
•		ŀ	Used cookii (UCO		Table 5 - Other materials						
•				il Shor	Mater	ial	Description				Valid from
37		l		rotati copp	Yellow grease	v e	Yellow grease is the US term be used for a wider range of i	for used cookin materials includ	ng oil but	t can w for	15/12/11

5 Land use change

"For determining if the bonus for restored degraded land 29 g CO_{2eq}/MJ shall apply, the definitions laid down by the COM of degraded land and heavily contaminated land must be considered ⁸.

For the calculation of carbon stock emissions from land use change, the rules lain down in Commission decision on guidelines for the calculation of land carbon stocks for the purpose of Annex V of Directive 2009/28/EC [OJ L151, page 19] shall be used. A template for this is included in the BioGrace Excel sheet."

⁴⁸ The Commission has not yet defined degraded land or heavily contaminated land (September 2012). The degraded land bonus can only be applied once the European Commission has finalised the definition of degraded land."

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 88

6.1 Excess electricity

6.2 Soil carbon accumulation via

improved agricultural methods

See rule document

1. A company makes an actual calculation and contracts you to verify. At this moment of time, do you have to take into account the calculation rules (and, if so, which version)?

Answer: Yes (rule 2.1). Version 4c of the rules apply

2. A company uses BioGrace to make actual calculations and ISCC to verify sustainability. The company argues that it should follow all ISCC rules, even if they contradict BioGrace rules. Is that correct?

Answer: No. Rule 2.1.1: BioGrace calculation rules are binding

GHG calculation course for verifier trainers
April 10+11 2013, Heidelberg

Slide 90

3. A company makes an actual calculation and provides you with an Excel file (copy of BioGrace Excel tool) with calculations made <u>without</u> track changes turned on. What to do?

Answer: You are allowed to refuse to verify until the company provides an Excel sheet with the whole calculation being made with track changes turned on. See rule 2.1.2

4. A company uses BioGrace to make actual calculations and uses a long list of user defined standard values which are all lower than the BioGrace standard values. What do you do?

Answer: Ask for proof that these specific inputs were used and ask for reliable information showing how these values were determined. If not provided, you cannot further verify

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 91

5. A company makes a calculation for FAME from rapeseed using the BioGrace Excel tool with disaggregated default values for cultivation and transport. The company only changes all the input data for the esterification process, and leaves the input values / starting values for the oil mill and for the refining untouched. Do you allow that this is done?

Answer: This is not in line with the recognised version 4c of the calculation rules (see rule 2.5) It was in line with version 4b

Slide 92 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

6. A farmer makes an actual calculation for cultivation of sugar beet using the BioGrace Excel tool. He uses measured (farm based data) for yield, fertiliser, pesticides, seeds and diesel use, and a literature value (incl. reference) for N₂O field emissions. Do you agree with this?

Answer: You should not. If actual data are used for cultivation, also the N₂O field emission should be based on these actual data.

Slide 93 • GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

- A farmer makes an actual calculation for cultivation of sugar beet using the BioGrace Excel tool. He uses measured (farm based data) for yield, fertiliser, pesticides, seeds and diesel use, and a calculated value (using the BioGrace Excel sheet) for N₂O field emissions.
 - He has used manure (organic fertiliser) only and has calculated zero emissions for the use of the manure. Do you agree with this?

Answer: You should agree to this, manure leads to zero emissions as it is a residue (see rule 3.3). You should check the calculation of the N_2O field emissions as manure leads to higher N_2O field emissions as compared to synthetic nitrogen fertiliser.

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 94

- 8. A company makes an actual calculation for FAME from rapeseed. It is demonstrated that the rapeseed cake has been sold as animal feed replacing soybean meal and a GHG credit for the rapeseed cake is calculated, which equals the GHG emission of the soy bean cake being replaced. Do you agree? Answer: No, this is the substitution method for taking into account the co-product rapeseed cake. Allocation based on energy content should be used (rule 4.2.1).
- 9. In an actual calculation electricity is taken from the grid in the UK. The average GHG emissions from electricity in the UK is being used to calculate the emissions. Is that correct?

Answer: Yes (see rule 4.3).

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 95

10. The only difference in the two calculations below is that CHP 2 is five times larger than CHP 1. Will the GHG performance of ethanol from plant 2 - in comparison to the performance of ethanol from plant 1 - be lower, the same, or higher?

Answer: The performance will be the same, as only that part of CHP 2 will be taken into account that is needed to supply the heat for the ethanol plant, which is 1/5 of CHP 2, resulting (again) in an excess electricity of 1. See rule 6.1

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

Slide 96

Slide 97

Thank you for your attention

Supported by TELLIGENT ENERGY ΕU ROPE

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.

GHG calculation course for verifier trainers April 10+11 2013, Heidelberg

www.biograce.net

R 0